Транзисторы для электронного балласта

Транзисторы для электронного балласта

Современные электронные балласты своми руками.

Автор: Анисимов Иван
Опубликовано 05.02.2007

Освещение лампами дневного света имеет значительное преимущество перед лампами накаливания: экономичность, более длительный срок службы, высокий КПД, малое количество тепла рассеиваемого лампой, спектр света излучаемого данными лампами более близок к естественному, по сравнению со столь привычными накальными. И естественно имеют недостатки, это: сложность включения ламп дневного освещения, возникновение стробоскопических эффектов на движущихся механизмах, сравнительная дороговизна.
Несмотря на сильное развитие современных электронных балластов для питания ламп дневного освещения (ЛДС), стандартной схемой включения ЛДС принято считать схему изображенную на рисунке.

Принцип действия прост, но всё таки требует определённых условий для нормального эксплуатирования ЛДС. Для зажигания люминесцентной лампы и ее нормальной работы требуется стартер (пусковое устройство), дроссель (ПРА — пускорегулирующий аппарат), конденсаторы. Стартер служит для автоматического включения и выключения предварительного накала электродов. Он представляет собой баллон из стекла, наполненный инертным газом, в котором находятся металлический и биметаллический электроды, выводы которых соединены с выступами в цоколе для крепления в схеме лампы. При включении лампы согласно вышеуказанной схеме, а на электроды лампы и стартера подается напряжение сети, которое достаточно для образования тлеющего разряда между электродами стартера. Поэтому в цепи протекает ток тлеющего разряда стартера, примерно 0,01. 0,04 А. Тепло, выделяемое при протекании тока через стартер, нагревает биметаллический электрод, который выгибается в сторону другого электрода. Через промежуток времени тлеющего разряда 0,2. 0,4 с контакты стартера замыкаются, и по цепи начинает течь пусковой ток, величина которого определяется напряжением сети и сопротивлениями дросселя и электродов лампы. Этого тока не достаточно для нагревания электродов стартера, и биметаллический электрод стартера разгибается, разрывая цепь пускового тока. Предварительно пусковой ток разогревает электроды лампы. Благодаря наличию в цепи индуктивности, при размыкании контактов стартера в цепи возникает импульс напряжения зажигающий лампу. Время разогрева электродов лампы составляет 0,2. 0,8 секунд что в большинстве случаев недостаточно, и лампа может не загореться с первого раза, и весь процесс может повториться. Общая длительность пускового режима лампы составляет 5. 15 с. Длительность пускового импульса при размыкании контактов стартера составляет 1. 2 мкс, что недостаточно для надежного зажигания лампы, поэтому параллельно контактам стартера включают конденсатор емкостью 5. 10 пФ. Дроссель, представляющий собой обмотку, намотанную на сердечник из листовой электротехнической стали, облегчает зажигание лампы, а также ограничивает ток и обеспечивает ее устойчивую работу (иногда дроссель заменяют компенсирующим конденсатором, лампочкой накаливания небольшой мощности). На рисунке 1, приведена простейшая схема стартерного зажигания люминесцентной лампы, включенной в сеть 127—220 В. Проблема рассматриваемой схемы в том что в момент размыкания стартера не всегда совпадает с полуволной напряжения сети, и срабатывание стартера происходит вхолостую. Схема конечно куда проще, чем те которые будут описываться ниже. Но всё таки схемы рассматриваемые далее находят своё применение в действительно качественных и экономичных системах освещения.
И так.

Электронный балласт на микросхеме IR2153

Что же относительно конкретных схемных решений, то я постараюсь осветить решения на основе микросхем фирмы-производителя International Rectifier.
Схема представленная на рисунке, представляет собой преобразователь сетевого напряжения 220 В, 50 Гц в 160 В 33 кГц. Именно полученные выходные параметры и являются теми факторами, значительно повышающими эксплуатационные характеристики источников света на основе ЛДС.
Первый фактор: Полностью исключается беспорядочное мерцание лампы в момент первоначального запуска.
Второй: Возникающий во время старта потенциал, достаточный для гарантированного поджога лампы с первого раза. Время запуска составляет примерно 0,5 сек.
Третий: Благодаря высокочастотной коммутации, газ в лампе не успевает деионизироваться в периодах спадания синусоиды питающего тока до нуля, а значит для нормальной работы лампы требуется меньшее напряжение. Это основная экономия электроэнергии.
Четвёртый: Полное отсутствие стробоскопического эффекта на движущихся механизма, вследствии отсутствия 100Гц (удвоенной частоты сети) пульсаций света.
Пятый: Требуется дроссель с меньшей индуктивностью, а значит и с меньшими размерами, весом, тепловыми, омическими потерями и стоимость.
Перед выше перечисленым можно смело ставить знак «+»
Ну и куда же деться от недостатков, они у нас таковы:
Первый: Относительная сложность схемы.
Второй: Относительно высокая стоимость изготовления такого аппарата (если речь идёт о питании одной лишь лампы).
Третий: Высокий уровень ЭМИ.

Схема состоит из основных узлов: фильтр питающего напряжения, выпрямитель сетевого напряжения, генератор-драйвер управления высоковольтными MOSFET транзисторами, полумост ключей и нагрузка в роли которой выступает лампа с балластным дросселем.
Ничего особо необычного схема не содержит и не является сложной.
Сетевое напряжение подаётся через сетевой фильтр L1, C2. Поступает на выпрямитель VD1, C3. Сформированные на конденсаторе С3 310В напрямую запитывают полумост транзисторов VT1, VT2 и через гасящий резистор R2 получаем необходимые для работы микросхемы 9-10В.
После подключения к сети примерно через 0,5 секунды на выходе схемы (правая по схеме обкладка конденсатора С8) появляется меандр в 165В с небольшой «полочкой» между открытыми состояниями транзисторов. Поданное на лампу ВЧ напряжение в течении ещё примерно 0,5 сек. прогревает катоды. Проявляется это в виде кратковременного тусклого оранжевого свечения катодов, после достаточной ионизации газа в колбе лампы, за счёт высоковольтных выбросов с дросселя L2, газовый промежуток пробивается. И, как же без последствий — лампа зажглась! Дальнейшая работа сопровождается прогревом лампы и индуктивности в результате чего яркость несколько увеличивается.
«Двигателем» схемы является микросхема генератор-драйвер. В содержимом которой можно разобраться исходя из вот этого рисунка:

Вам понравится:  Схема подключения датчик движения пироэлектрический

Микросхема содержит подобие 555-го таймера, фазорасщепляющий триггер, формирователь «мёртвого» промежутка позволяющий избежать сквозного тока в выходных ключах, схему питания драйвера верхнего ключа, схему контроля заниженного напряжения, стабилитрон основного питания и даже цепь задержки, позволяющая выровнять время распространения сигналов по каналам верхнего и нижнего ключа, а также ещё несколько дополнительных узлов, в которых разбираться нет смысла.

Источник

Электронный балласт

Люминесцентные лампы, они же лампы дневного света, они же ЛДС известны всем. Они экономичнее ламп накаливания почти в 5 раз,дают более естественный, мягкий свет и излучают более мощный световой поток. Единственными их недостатками являются более высокая стоимость (что, впрочем, компенсируется увеличенным в 10-15 раз сроком службы в сравнении с лампой накаливания) и более сложная схема подключения. Стоимость, как уже было сказано компенсируется экономичностью и долговечностью, а схему мы сейчас детально рассмотрим и сможем подключать ее и даже устранять некоторые неисправности самостоятельно.

В общих чертах подключение люминесцентных ламп показано на рисунке 1. Как видно из него, ЛДС, в отличие от обычных ламп накаливания, включаемых непосредственно в сеть, через некое устройство, называемое пускорегулирующим, а попросту балластом. О секретах этого балласта — его устройстве, подключении, возможных неисправностях мы и будем разговаривать в сегодняшнем материале.

Схема электронного балласта для люминесцентной лампы

Как и сами люминесцентные лампы, пускорегулирующие устройства для них различаются по размерам, мощности, а также некоторыми особенностями конструкции. Как габариты, так и мощность зависят от типа ламп, для работы с которыми предназначен тот или иной балласт. Так, например, если в лампах классической конструкции (рис. 1) размер не критичен, то в компактных люминесцентных лампах (КЛЛ), балласт размещенный между цоколем и колбой лампы, просто обязан быть компактным (рис. 2)

Несмотря на эти различия, в целом работают они по одному и тому же принципу, который понятен из схемы, приведенной на рисунке 3.

Давайте разберем, для чего служит каждый из модулей, обозначенных на этой схеме. Первым у нас идет фильтр электромагнитных помех, который, как ясно из названия, убирает помехи, излучаемые балластом и мешающие работе других устройств. Кстати, следует отметить, что на работу самого балласта наличие/отсутствие этого фильтра не влияет, он предназначен для защиты от помех электроприборов, расположенных в непосредственный близости от него, из-за чего некоторые недобросовестные производители, в целях экономии могут просто выпускать пускорегулирующие устройства без этого фильтра. Поэтому приобретать балласт для люминесцентных ламп рекомендуется только у проверенных производителей.

Далее за фильтром помех следует выпрямитель, собранный по обычной мостовой схеме, и предназначенный для выпрямления переменного тока. Дело в том, что если запитать нашу лампу током сетевой частоты (50 Гц), то сама лампа может мерцать, а дроссель балласта издавать неприятный звук, что не просто доставляет дискомфорт, но также повышает утомляемость и может вызывать головную боль, поэтому питать нашу лампу мы будем током высокой частоты (35-40 кГц т.е 35-40 тысяч колебаний в секунду). Где связь между постоянным током и током такой высокой частоты (который по своей сути все-таки является переменным)? Все просто — такой ток может создать только генератор высокой частоты, который представляет собой электронное устройство и питается постоянным током.

За выпрямителем у некоторых моделей установлен корректор коэффициента мощности, предназначенный для снижения реактивной мощности. Что же это за мощность такая? сейчас разберем. Полная мощность любого электропотребителя делится на 2 слагаемых — это мощность активная (то есть полезная) и реактивная. Наглядно показано это на рисунке 4.

Из рисунка видно, что часть полной мощности забирают бесполезные потери на нагрев и излучение, которые можно снизить, зная причины возникновения и природу реактивной мощности. В данной схеме реактивная мощность появляется из-за наличия индуктивной нагрузки (дросселя), по вине которого происходит сдвиг фаз по току и напряжению. Вообще, возникновение реактивной мощности возможно только в цепях переменного тока и только при использовании индуктивных или емкостных нагрузок. Причем на индуктивных нагрузках происходит отставание тока по фазе, а на емкостных — наоборот — опережение (рисунок 5), сама же реактивная мощность рассчитывается по формуле, приведенной на рис.6.

То есть для уменьшения реактивной мощности нам нужно всего лишь уменьшить угол сдвига. Как уже говорилось, на индуктивных нагрузках наблюдается отставание тока, а на емкостных — опережение. Так как наша нагрузка индуктивная, то для компенсации сдвига, нам нужно просто добавить конденсаторы рассчитанной емкости, из которых, собственно и состоит блок коррекции мощности данного балласта.

За блоком коррекции мощности следует фильтр постоянного тока. Так как для выпрямления тока используется обычный мостовой выпрямитель, то напряжение на выходе будет пульсирующим. Сгладить его помогает конденсатор большой емкости.

Вам понравится:  Схема подключения дополнительного реле на противотуманки

Далее сглаженное напряжение попадает в инвертор. Он преобразует постоянный ток в переменный ток высокой частоты. Высокочастотный ток подается уже непосредственно на лампу.

В некоторых более дорогих моделях пускорегулирующих устройств предусмотрена обратная связь, то есть контроль наличия лампы. Такая связь не даст устройству запуститься при сгоревшей или отсутствующей лампе, что важно, так как импульсные источники питания недопустимо включать без нагрузки. Разобравшись с назначением каждого блока, давайте теперь рассмотрим его принципиальную электрическую схему (рис.7).

Здесь, как мы видим, фильтр электромагнитных помех, выпрямитель и фильтр постоянного тока объединены в один блок. Далее следует генератор высокой частоты и индуктивный балласт (дроссель). Его назначение — ограничивать ток, подаваемый на лампу, в противном случае тлеющий разряд в ней может перейти в плазменную электрическую дугу. Данная схема может несколько отличаться (особенностью конструкции, либо параметрами элементов) от иных схем, но в целом принцип их работы одинаков.

Принцип работы люминесцентных ламп

Глядя на вышеприведенную схему можно удивиться: зачем такие сложности, чтобы включить обычную лампочку? Но удивление проходит сразу после знакомства с принципом работы ЛДС. Все дело в том, что лампочка-то не совсем обычная, свет в ней излучает не раскаленная нить, как в лампе накаливания, а тлеющий разряд в газовой атмосфере. Люминесцентная лампа представляет собой трубку из кварцевого стекла, покрытую слоем люминофора (вещество, преобразующее поглощаемую им энергию в свет). Лампа заполнена смесью паров ртути и инертного газа. С торцов ее смонтированы катоды, представляющие собой нити накала (разогрев нитей происходит при запуске лампы). В момент запуска, нити разогреваются, излучая свободные электроны, под воздействием которых в лампе возникает тлеющий разряд, вызывающий свечение люминофора (рис. 8).

На рисунке мы видим общее устройство лампы и поведение ее в момент запуска через электронный балласт. Теперь, узнав, как работает сама лампа, балласт, и для чего этот балласт нужен, стоит рассмотреть вопрос как быть, если лампа вдруг перестала работать. Скажу сразу — отремонтировать можно, как балласт, так и саму лампу. Скажу более — такую лампу можно запустить даже если она перегорела. Способы ремонта мы сейчас как раз и рассмотрим.

Проверка балластов люминесцентных ламп и их ремонт

Но в любом ремонте самое сложное — не сам ремонт, а диагностика. Любая диагностика начинается с проверки менее сложных и трудноустранимых причин, постепенно переходя ко все боле и более сложным. Так при поиске неисправностей в ЛДС, в первую очередь проверяется сама лампа путем замены на заведомо рабочую. Если это ни к чему не привело, следует проверить сам балласт. Самый простой способ — замкнуть между собой контакты, подключаемые к нитям накала ламп и подключить туда обычную лампу накаливания, как показано на схеме (рис. 9), а для тех кто читать схемы еще только учится, предлагаем более наглядное фото (рис. 10).

Если лампа горит, значит балласт работает и причину неисправности следует искать в лампе, если же лампа не загорается, значит балласт вышел из строя. Для обнаружения неисправности первым делом стоит разобрать корпус балласта и произвести визуальный осмотр. В случае обнаружения ярко выраженных следов перегорания деталей (рис. 11), либо сильного запаха гари, чинить этот балласт смысла не имеет.

Если же визуально детали целые, а запаха гари нет, то стоит обратить внимание на дорожки печатной платы. При обнаружении обрыва, устраняем эту неисправность путем припаивания куска обычного изолированного провода к любой из точек каждого участка оборванной дорожки. Также стоит подключить к проверяемому балласту рабочую лампу и посмотреть в темноте на ее поведение. В случая слабого накала нитей, причина в пробое одного из конденсаторов, соединяющих нити лампы. Если все эти проверки ни к чему не привели — вышел из строя один из электронных компонентов схемы. В первую очередь обращаем внимание на диоды и предохранитель (его роль тут часто играет маломощный резистор с небольшим — до 5-ти Ом — сопротивлением). Далее проверяем транзисторы. Если все эти элементы целы, то стоит также проверить динистор (заменив его на заведомо целый). Все детали для замены и проверки можно брать из балластов компактных люминесцентных ламп — у них нередко разрушается колба, либо перегорает нить накала, оставляя целым балласт. В дополнение к сказанному выложу схемку — шпаргалку, детали, чаще всего выходящие из строя, обведены на ней красным (рис. 12). Схема, на первый взгляд, немного отличается от нашей, но принцип и детали в общих чертах одни и те же, так что серьезных затруднений в их определении не должно возникнуть.

Видео — Ремонт электронного балласта

Ремонт люминесцентных ламп

После ремонта либо замены балласта, вновь устанавливаем лампы на место и включаем ток. Если они по-прежнему не горят, а балласт исправен, то дело в самих лампах причин неисправности тут всего 3 — перегорание нитей накала, старение лампы либо утечка газа (такое случается, если плохо пропаяны штыревые контакты цоколя). Если со вторыми двумя вариантами сделать что-либо невозможно, то первый вполне даже излечим. Для этого нужно просто подключить лампу по альтернативной схеме (рис. 13). Сразу оговорюсь — с новыми лампами так поступать не рекомендуется — способ довольно агрессивный и при его применении лампа быстро приходит в негодность. Схема достаточно простая и состоит всего из 4-х деталей — индуктивного (не путайте с электронным это просто катушка, не содержащая радиоэлементов) балласта, конденсатора 1-4 мкФ х 400 в, кнопочного выключателя, ну и, конечно же, самой лампы.

Вам понравится:  Схема подключения противоугонной сигнализации

Принцип работы этой схемы предельно прост — при нажатии на кнопку, в лампу через конденсатор подается высокое напряжение, достаточное для ее зажигания. После зажигания лампы кнопку отпускают, она вместе с конденсатором нужна только для разогрева лампы и возникновения в ней тлеющего разряда, после чего лампа работает в обычном режиме. Такая схема подключения, конечно же не делает лампу вечной, но позволяет продлить ей жизнь на пару-тройку месяцев.

Видео — Ремонт и переделка люминесцентных ламп

Электронный балласт: где купить?

Помимо обычных специализированных магазинов имеются также интернет — порталы (свой сай сейчас имеет практически каждый производитель), где можно заказать интересующее устройство. Где лучше? А это уж кому как удобнее — свои плюсы и минусы есть в обоих вариантах — если в одном случае можно подержать устройство в руках, проверить, при необходимости легко обменять, то в другом можно сравнить цены различных компаний, почитать отзывы, вживую пообщаться с людьми уже купившими балласт именно такого типа, модели и мощности, какой нужен именно Вам… Так что где покупать — дело сугубо личное. Единственное непременное условие в обоих случаях — мощность балласта должна соответствовать мощности используемых ламп, в противном случае что-то из них (то устройство, чья мощность ниже) сгорит. Решив, где покупать, можно задуматься и о том, какой покупать.

Ниже я сейчас приведу небольшую подборку с Яндекс-Маркета с хорошим рейтингом и приемлемой ценой:

  1. ЭПРА для люминесцентных ламп Foton Lighting 4х18W цена 429 р.
  2. Электронный ПРА для люминесцентных ламп OSRAM QTP8 3×18/4×18 цена 676 р.
  3. Балласт В-18 для 1х10w цена 350 р.
  4. Электронный ПРА для люминесцентных ламп OSRAM QT-FIT8 1X58-70 цена 826 р.
  5. Электронный пускорегулирующий аппарат (ЭПРА) Elektrostandard BLS-01 T4 8W цена 189 р.
  6. ЭПРА Navigator 94 429 NB-ETL-158-EA3 цена 629 р.
  7. Электронный балласт HELVAR 1x58W цена 300 р.
  8. Аппарат пускорегулирующий электронный (балласт), 1*30W T8/G13 230V, EB51S цена 457 р.

В этот список вошли балласты с оценкой в 5 звезд и ценой до 1000 рублей различных производителей. Это текущая обстановка на Яндекс Маркете. А для того, чтобы эта информация не стала актуальной как можно дольше, посмотрим как по возможности сберечь от выхода из строя имеющиеся у нас лампы.

Цены на электронные балласты

Причины поломок ламп с электронным балластом

Причин этих на самом деле не так много и если с первой из них — детали низкого качества, мы уже ничего не можем сделать, то сберечь наши светильники от прочих факторов, нам вполне по силам. Итак, перегрев — вторая по распространенности причина выхода их строя как электронного балласта, так и самих ламп. Вызван перегрев чаще бывает не внешним теплом, а перепадами напряжения либо неправильной эксплуатацией. Также вредны для ламп частые включения — выключения, нестабильное напряжение в электросети и повышенная влажность в помещении. Все эти факторы негативно сказываются на долговечности ламп, но предотвратить их в наших силах.

Видео — Почему может не работать светодиодная лампа

Как работает ЛЛ с электромагнитным балластом

А напоследок немного углубимся в историю и вспомним все такие же лампы, но с электромагнитным (индуктивным) балластом — именно такой был рассмотрен на рисунке 13. Для начала рассмотрим схему нормального включения такой лампы (она, собственно, мало отличается от схемы экстремального включения (все тот же рисунок 13), но некоторые отличия все-таки есть). Так, например, конденсатор теперь должен сглаживать пульсацию, а не создавать скачок напряжения, поэтому из параллельного подключения переключен на последовательное, а кнопка заменена на стартер — теперь, когда нити накала целы, он отлично справляется со своей задачей — разогревом и зажиганием лампы. Это, собственно, и все изменения в схеме (рис.14)

Теперь сравним принцип и качество работы с принципом и качеством ЛЛ с электронным балластом. Принцип приблизительно такой же — зажигается лампа высоким напряжением, после возникновения тлеющего разряда напряжение падает. Зато что касается качества — свет лампы, питаемой током низкой частоты неровный — пульсирующий, прослушивается гудение дросселя, ломается чаще, нежели ЛЛ с электронным устройством пуска. Правда нельзя не отметить и одного плюса — чинится такая лампа в считанные минуты по той простой причине, что перегореть в ней могут только стартер (чаще всего), сама лампа (довольно редко) и дроссель, он же электромагнитный балласт (крайне редко, на моей памяти ни разу). Вот такая простота как конструкции, так и ремонта.

Видео — Дроссель 40 Вт и куда его можно применить

Вот мы и разобрались немного с устройством электронных балластов и принципом работы ЛЛ двух разных поколений, узнали о их слабых и сильных сторонах и даже узнав о тонкостях их ремонта. Как всегда приглашаю всех заходить почаще, так как ресурс постоянно обновляется и мы всегда рады делиться с вами новой интересной и полезной информацией.

Источник

Поделиться с друзьями
Радиолюбительские схемы
Adblock
detector