Схема не на мдп транзисторе с встроенным n каналом



Полевые транзисторы с изолированным затвором со встроенным каналом

Полевые транзисторы с изолированным затвором (IGFET) – это однополярные устройства, как и обычные полевые транзисторы (JFET): то есть управляемый ток не должен проходить через PN переход. В транзисторе имеется PN переход, но его единственное назначение – обеспечить непроводящую обедненную область, которая используется для ограничения тока через канал.

Ниже показана структура N-канального полевого транзистора с изолированным затвором со «встроенным» каналом:

N-канальный полевой транзистор с изолированным затвором со «встроенным» каналом

Обратите внимание на то, что вывод стока соединяется с любым концом N-канала, и что вывод затвора прикреплен к металлической пластине, отделенной от канала тонким изолирующим барьером. Этот барьер иногда выполняется из двуокиси кремния (основного химического соединения, находимого в песке), которая является очень хорошим изолятором. Из-за конструкции Метал (затвор) – Оксид (барьер) – Полупроводник (канал) полевые транзисторы с изолированным затвором иногда называют МОП транзисторами или MOSFET транзисторами (Metal Oxide Semiconductor Field Effect Transistor). Однако существуют и другие типы конструкции полевых транзисторов с изолированным затвором, поэтому аббревиатуры «IGFET» и «МДП» являются лучшим описанием для этого общего класса транзисторов.

Также обратите внимание на то, что у полевого транзистора с изолированным затвором имеется четыре вывода. На практике вывод подложки непосредственно соединен с истоком, чтобы сделать эти два вывода общими. Обычно это соединение выполняется внутри МДП транзистора, устраняя отдельное соединение подложки, в результате чего получается трехвыводное устройство с немного отличающимся условным обозначением.

N-канальный полевой транзистор с изолированным затвором со «встроенным» каналом

Поскольку исток и подложка объединены, слои N и P МДП транзистора в конечном итоге напрямую связаны друг с другом через внешний провод. Это соединение предотвращает воздействие любого напряжения на PN переход. В результате между этими двумя материалами существует обедненная область, но она никогда не может быть расширена или сужена. Работа полевого транзистора основана на расширении обедненной области PN перехода, но здесь, в МДП транзисторе, этого быть не может, поэтому работа МДП транзистора должна основываться на другом эффекте.

Действительно, поскольку, когда управляющее напряжение подается между затвором и источником, проводимость канала изменяется в результате того, что обедненная область движется ближе или дальше от затвора. Другими словами, эффективная ширина канала изменяется так же, как и в полевом транзисторе, но это изменение ширины канала связано со смещением обедненной области, а не с ее расширением.

В N-канальном полевом транзисторе с изолированным затвором управляющее напряжение, прикладываемое плюсом к затвору и минусом к истоку, имеет эффект отталкивания обедненной области PN перехода, расширяющего канал N-типа и увеличивающего проводимость:

Канал расширяется для получения большей проводимости

Изменение полярности управляющего напряжения имеет противоположный эффект, притягивание обедненной области и сужение канала и, следовательно, уменьшение проводимости канала:

Канал сужается для получения меньшей проводимости

Изолированный затвор допускает использование управляющего напряжения любой полярности без опасности прямого смещения перехода, что было важно для обычных полевых транзисторов. Этот тип полевого транзистора с изолированным затвором, хотя его называют в англоязычной литературе «depletion-type» (тип с обеднением), фактически имеет возможность либо обеднения своего канала (канал сужается), либо его насыщения (канал расширяется). Полярность входного напряжения определяет, какое влияние будет оказываться на канал.

Понять то, какая полярность имеет какой эффект, не так сложно, как может показаться. Ключом является рассмотрение типа полупроводникового легирования, используемого в канале (N-канал или P-канал?), а затем связывание этого типа легирования с выводом источника входного напряжения, подключенного к каналу через вывод истока. Если МДП транзистор является N-канальным, и входное напряжение подключено так, что плюс находится на затворе, а минус – на истоке, канал будет увеличен, поскольку дополнительные электроны накапливаются на канальной стороне диэлектрического барьера. Подумайте, «минус источника соответствует N-типу, тем самым насыщая канал соответствующим типом носителей заряда (электронами) и делая его более проводящим». И наоборот, если входное напряжение подключено к N-канальному МДП транзистору другим способом (минус подключен к затвору, а плюс – к истоку), свободные электроны будут «отняты» от канала, так как конденсатор затвор-канал будет заряжаться, что приводит к истощению канала в плане основных носителей заряда и к уменьшению его проводимости.

Для P-канальных полевых транзисторов с изолированным затвором полярность входного напряжения и воздействия на канал следуют тому же правилу. То есть, требуется полярность, противоположная той, при которой N-канальный МДП транзистор либо истощается, либо насыщается:

Канал P-типа расширяется для получения большей проводимости Канал P-типа сужается для получения меньшей проводимости

Покажем соответствие полярностей смещения на стандартных условных обозначениях полевых транзисторов с изолированным затвором:

Соответствие полярностей смещения на стандартных условных обозначениях полевых транзисторов с изолированным затвором

Когда между затвором и истоком прикладывается нулевое напряжение, полевой транзистор с изолированным затвором будет проводить ток между истоком и стоком, но не такой большой, как если бы он был насыщен соответствующим напряжением затвора. Это помещает полевые транзисторы с изолированным затвором со встроенным каналом (англ. «depletion-type» IGFET или просто D-type IGFET) в свою собственную категорию транзисторов. Биполярные транзисторы являются нормально выключенными устройствами: при отсутствии тока базы они блокируют любой ток через коллектор. Полевые транзисторы являются нормально включенными устройствами: при прикладывании нулевого напряжения затвор-исток они обеспечивают максимальный ток стока (на самом деле, вы можете выжать из полевого транзистора бо́льшие токи стока, прикладывая небольшое напряжение прямого смещения между затвором и истоком, но на практике так никогда не стоит делать из-за риска повреждения его хрупкого PN перехода). Однако МДП транзисторы со встроенным каналом являются нормально наполовину включенными устройствами: без напряжения затвор-исток их уровень проводимости находится где-то между отсечкой и полным насыщением. Кроме того, они допускают прикладывание напряжений затвор-исток любой полярности, причем PN переход невосприимчив к повреждению из-за изолирующего барьера и, в частности, из-за прямого соединения между истоком и подложкой, предотвращающего любую разность потенциалов на переходе.

По иронии судьбы поведение проводимости МДП транзистора со встроенным каналом поразительно похоже на поведение проводимости электронной лампы из ряда триодов/тетродов/пентодов. Эти устройства были регуляторами тока, управляемыми напряжением, которые также пропускали через себя ток при прикладывании нулевого управляющего напряжения. Управляющее напряжение одной полярности (минус на сетке, и плюс на катоде) уменьшало бы проводимость через лампу, в то время как напряжение противоположной полярности (плюс на сетке, и минус на катоде) увеличивало бы проводимость. Интересно, что одна из более поздних конструкций транзистора демонстрирует те же основные свойства, что и самое первое активное (электронное) устройство.

Вам понравится:  Простой пробник для конденсаторов

Несколько анализов в SPICE продемонстрируют регулирующее ток поведение МДП транзисторов со встроенным каналом. Во-первых, тест с нулевым входным напряжением (затвор закорочен на исток) и с изменением напряжения питания от 0 до 50 вольт. На графике показан ток стока:

Тестовая схема 1 Ток стока

Как и ожидалось для любого транзистора, управляемый ток остается постоянным на уровне стабилизации в широком диапазоне напряжений питания. В данном случае эта точка стабилизации составляет 10 мкА (1.000E-05). Теперь давайте посмотрим, что произойдет, когда мы приложим отрицательное напряжение к затвору (относительно истока) и будем изменять напряжение питания в том же диапазоне от 0 до 50 вольт:

Тестовая схема 2 Ток стока

Неудивительно, что ток стока теперь стабилизируется на более низком значении 2,5 мкА (по сравнению с 10 мкА при нулевом входном напряжении). Теперь давайте приложим входное напряжение другой полярности, чтобы насытить МДП транзистор:

Тестовая схема 3 Ток стока

При насыщении транзистора с помощью небольшого управляющего напряжения ток стока теперь увеличивается до 22,5 мкА (2.250E-05). Из этих трех наборов значений напряжений и графиков тока должно быть очевидно, что отношение между током стока и напряжением затвор-исток нелинейно, как это было и с полевым транзистором. При истощающем напряжении 1/2 вольта ток стока составляет 2,5 мкА; при 0 вольт на входе ток стока поднимается до 10 мкА; и при насыщающем напряжении 1/2 вольта ток стока составляет 22,5 мкА. Чтобы лучше понять эту нелинейность, мы можем использовать SPICE для построения графика тока стока в зависимости от входного напряжения, изменяя напряжение от отрицательного (истощающего) значения до положительного (насыщающего) значения, поддерживая напряжение питания V1 на постоянном значении.

Зависимость тока стока от напряжения затвор-исток

Подобно тому, как это было с обычными полевыми транзисторами, эта присущая МДП транзисторам нелинейность может вызывать искажения в схеме усилителя, так как входной сигнал не будет воспроизводиться со 100-процентной точностью на выходе. Также обратите внимание, что напряжение затвор-исток примерно 1 вольт в направлении истощения может пережать канал, так что тока стока практически не будет. МДП транзисторы со встроенным каналом, как и обычные полевые транзисторы, имеют определенное напряжение отсечки. Этот параметр точно зависит от конкретного транзистора и может быть не таким, как в нашем моделировании.

Вычислив набор кривых характеристик МДП транзистора, мы увидим диаграмму, не похожую на диаграмму для обычного полевого транзистора:

Выходные характеристики полевого транзистора с изолированным затвором со встроенным каналом

Источник

Полевые транзисторы: принцип действия, схемы, режимы работы и моделирование

Мы уже рассмотрели устройство биполярных транзисторов и их работу, теперь давайте узнаем о том, какие бывают полевые транзисторы. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной. Сейчас в большей степени используются приборы с изолированным затвором, о типах полевых транзисторов и их особенностях сегодня мы и поговорим. В статье я буду проводить сравнение с биполярными транзисторами, в отдельных местах.

Содержание статьи

Определение

Полевой транзистор – это полупроводниковый полностью управляемый ключ, управляемый электрическим полем. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током. Электрическое поле создается напряжением, приложенным к затвору относительно истока. Полярность управляющего напряжения зависит от типа канала транзистора. Здесь прослеживается хорошая аналогия с электронными вакуумными лампами.

Другое название полевых транзисторов – униполярные. «УНО» — значит один. В полевых транзисторах в зависимости от типа канала ток осуществляется только одним типом носителей дырками или электронами.

В биполярных транзисторах ток формировался из двух типов носителей зарядов – электронов и дырок, независимо от типа приборов. Полевые транзисторы в общем случае можно разделить на:

транзисторы с управляющим p-n-переходом;

транзисторы с изолированным затвором.

И те и другие могут быть n-канальными и p-канальными, к затвору первых нужно прикладывать положительное управляющее напряжение для открытия ключа, а для вторых – отрицательное относительно истока.

У всех типов полевых транзисторов есть три вывода (иногда 4, но редко, я встречал только на советских и он был соединен с корпусом).

1. Исток (источник носителей заряда, аналог эмиттера на биполярном).

2. Сток (приемник носителей заряда от истока, аналог коллектора биполярного транзистора).

3. Затвор (управляющий электрод, аналог сетки на лампах и базы на биполярных транзисторах).

Транзистор с управляющим pn-переходом

Транзистор состоит из таких областей:

На изображении вы видите схематическую структуру такого транзистора, выводы соединены с металлизированными участками затвора, истока и стока. На конкретной схеме (это p-канальный прибор) затвор – это n-слой, имеет меньше удельное сопротивление, чем область канала (p-слой), а область p-n-перехода в большей степени расположена в p-области по этой причине.

Условное графическое обозначение:

а – полевой транзистор n-типа, б – полевой транзистор p-типа

Чтобы легче было запомнить, вспомните обозначение диода, где стрелка указывает от p-области в n-область. Здесь также.

Первое состояние – приложим внешнее напряжение.

Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Можно провести аналогию с нормально-замкнутым ключом. Этот ток называется Iснач или начальный ток стока при Uзи=0.

Полевой транзистор с управляющим p-n-переходом, без приложенного управляющего напряжения к затвору является максимально открытым.

Напряжение к стоку и истоку прикладывается таким образом:

Через исток вводятся основные носители зарядов!

Это значит, что если транзистор p-канальный, то к истоку подключают положительный вывод источника питания, т.к. основными носителями являются дырки (положительные носители зарядов) – это так называемая дырочная проводимость. Если транзистор n-канальный к истоку подключают отрицательный вывод источника питания, т.к. в нем основными носителями заряда являются электроны (отрицательные носители зарядов).

Исток — источник основных носителей заряда.

Вот результаты моделирования такой ситуации. Слева расположен p-канальный, а справа n-канальный транзистор.

Второе состояние – подаём напряжение на затвор

При подаче положительного напряжения на затвор относительно истока (Uзи) для p-канального и отрицательное для n-канального, он смещается в обратном направлении, область p-n-перехода расширяется в сторону канала. В резльтате чего ширина канала уменьшается, ток снижается. Напряжение затвора, при котором ток через ключ перестает протекать называется, напряжением отсечки.

Вам понравится:  Триггер шмитта на микросхемах

Ключ начинает закрываться.

Достигнуто напряжение отсечки, и ключ полностью закрыт. На картинке с результатами моделирования отображено такое состояние для p-канального (слева) и n-канального (справа) ключа. Кстати на английском языке такой транзистор называется JFET.

Режимы работы

Рабочий режим транзистора при напряжение Uзи либо нулевое, либо обратное. За счет обратного напряжения можно «прикрывать транзистор», используется в усилителях класса А и прочих схемах где нужно плавное регулирование.

Режим отсечки наступает, когда Uзи=Uотсечки для каждого транзистора оно своё, но в любом случае прикладывается в обратном направлении.

Характеристики, ВАХ

Выходной характеристикой называют график, на котором изображена зависимость тока стока от Uси (приложенного к выводам стока и истока), при различных напряжениях затвора.

Можно разбить на три области. Вначале (в левой части графика) мы видим омическую область – в этом промежутке транзистор ведет себя как резистор, ток возрастает почти линейно, доходя до определенного уровня, переходит в область насыщения (в центре графика).

В правой части график мы видим, что ток опять начинает расти, это область пробоя, здесь транзистор находиться не должен. Самая верхняя ветвь изображенная на рисунке – это ток при нулевом Uзи, мы видим, что ток здесь самый большой.

Чем больше напряжение Uзи, тем меньше ток стока. Каждая из ветвей отличается на 0.5 вольта на затворе. Что мы подтвердили моделированием.

Здесь изображена стоко-затворная характеристика, т.е. зависимость тока стока от напряжения на затворе при одинаковом напряжении стока-исток (в данном примере 10В), здесь шаг сетки также 0.5В, мы опять видим что чем ближе напряжение Uзи к 0, тем больший ток стока.

В биполярных транзисторах был такой параметр как коэффициент передачи тока или коэффициент усиления, он обозначался как B или H21э или Hfe. В полевых же для отображения способности усиливать напряжение используется крутизна обозначается буквой S

То есть крутизна показывает, насколько миллиАмпер (или Ампер) растёт ток стока при увеличении напряжения затвор-исток на количество Вольт при неизменяемом напряжении сток-исток. Её можно вычислить исходя из стоко-затворной характеристики, на приведенном выше примере крутизна равняется порядка 8 мА/В.

Схемы включения

Как и у биполярных транзисторов есть три типовых схемы включения:

1. С общим истоком (а). Используется чаще всех, даёт усиление по току и мощности.

2. С общим затвором (б). Редко используется, низкое входное сопротивления, усиления нет.

3. С общим стоком (в). Усиление по напряжению близко к 1, большое входное сопротивление, а выходное низкое. Другое название – истоковый повторитель.

Особенности, преимущества, недостатки

Главное преимущество полевого транзистора высокое входное сопротивление. Входное сопротивление это отношения тока к напряжению затвор-исток. Принцип действия лежит в управлении с помощью электрического поля, а оно образуется при приложении напряжения. То есть полевые транзисторы управляются напряжением.

Полевой транзистор практически не потребляет тока управления, это снижает потери управления, искажения сигнала, перегрузку по току источника сигнала…

В среднем частотные характеристики полевых транзисторов лучше, чем у биполярных, это связано с тем, что нужно меньше времени на «рассасывание» носителей заряда в областях биполярного транзистора. Некоторые современные биполярные транзисторы могут и превосходить полевые, это связано с использованием более совершенных технологий, уменьшения ширины базы и прочего.

Низкий уровень шумов у полевых транзисторов обусловлен отсутствием процесса инжекции зарядов, как у биполярных.

Стабильность при изменении температуры.

Малое потребление мощности в проводящем состоянии – больший КПД ваших устройств.

Простейший пример использования высокого входного сопротивление – это приборы согласователи для подключения электроакустических гитар с пьезозвукоснимателями и электрогитар с электромагнитными звукоснимателями к линейным входам с низким входным сопротивлением.

Низкое входное сопротивление может вызвать просадки входного сигнала, исказив его форму в разной степени в зависимости от частоты сигнала. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Вот простейшая схема такого устройства. Подойдет для подключения электрогитар в линейный вход аудио-карты компьютера. С ней звук станет ярче, а тембр богаче.

Главным недостатком является то, что такие транзисторы боятся статики. Вы можете взять наэлектризованными руками элемент, и он тут же выйдет из строя, это и есть следствие управления ключом с помощью поля. С ними рекомендуют работать в диэлектрических перчатках, подключенным через специальный браслет к заземлению, низковольтным паяльником с изолированным жалом, а выводы транзистора можно обвязать проволокой, чтобы закоротить их на время монтажа.

Современные приборы практически не боятся этого, поскольку по входу в них могут быть встроены защитные устройства типа стабилитронов, которые срабатывают при превышении напряжения.

Иногда у начинающих радиолюбителей опасения доходят до абсурда, типа надевания на голову шапочек из фольги. Всё описанное выше хоть и является обязательным к исполнению, но не соблюдение каких либо условий не гарантирует выход из строя прибора.

Полевые транзисторы с изолированным затвором

Этот вид транзисторов активно используется в качестве полупроводниковых управляемых ключей. Причем работают они чаще всего именно в ключевом режиме (два положения «вкл» и «выкл»). У них есть несколько названий:

1. МДП-транзистор (метал-диэлектрик-полупроводник).

2. МОП-транзистор (метал-окисел-полупроводник).

3. MOSFET-транзистор (metal-oxide-semiconductor).

Запомните – это лишь вариации одного названия. Диэлектрик, или как его еще называют окисел, играет роль изолятора для затвора. На схеме ниже изолятор изображен между n-областью около затвора и затвором в виде белой зоны с точками. Он выполнен из диоксида кремния.

Диэлектрик исключает электрический контакт между электродом затвора и подложкой. В отличие от управляющего p-n-перехода он работает не на принципе расширения перехода и перекрытия канала, а на принципе изменения концентрации носителей заряда в полупроводнике под действием внешнего электрического поля. МОП-транзисторы бывают двух типов:

1. Со встроенным каналом.

2. С индуцированным каналом

Транзисторы со встроенным каналом

На схеме вы видите транзистор с встроенным каналом. Из неё уже можно догадаться, что принцип его работы напоминает полевой транзистор с управляющим p-n-переходом, т.е. когда напряжение затвора равно нулю – ток протекает через ключ.

Около истока и стока созданы две области с повышенным содержанием примесных носителей заряда (n+) с повышенной проводимостью. Подложкой называется основание P-типа (в данном случае).

Обратите внимание, что кристалл (подложка) соединена с истоком, на многих условных графических обозначениях он так и рисуется. При повышении напряжения на затворе в канале возникает поперечное электрическое поле, оно отталкивает носители зарядов (электроны) и канал закрывается при достижении порогового Uзи.

Вам понравится:  Устройство скоростного велосипеда задний переключатель

Режимы работы

При подаче отрицательного напряжения затвор-исток ток стока падает, транзистор начинает закрывать – это называется режим обеднения.

При подаче положительного напряжения на затвор-исток происходит обратный процесс – электроны притягиваются, ток возрастает. Это режим обогащения.

Всё вышесказанное справедливо для МОП-транзисторов со встроенным каналом N-типа. Если канал p-типа все слова «электроны» заменяются на «дырки», полярности напряжения изменяются на противоположные.

Моделирование

Транзистор со встроенным каналом n-типа с нулевым напряжением на затворе:

Подадим на затвор -1В. Ток снизился в 20 раз.

Согласно datasheet на этот транзистор пороговое напряжение затвор-исток у нас в районе одного вольта, а типовое его значение – 1.2 В, проверим это.

Ток стал в микроамперах. Если еще немного повысить напряжение, он исчезнет полностью.

Я выбрал транзистор наугад, и мне попался достаточно чувствительный прибор. Попробую изменить полярность напряжения, чтобы на затворе был положительный потенциал, проверим режим обогащения.

При напряжении на затворе 1В ток увеличился в четыре раза, по сравнению с тем, что был при 0В (первая картинка в этом разделе). Отсюда следует, что в отличие от предыдущего типа транзисторов и биполярных транзисторов он без дополнительной обвязки может работать как на повышение тока, так и на понижение. Это заявление весьма грубо, но в первом приближении имеет право на существование.

Характеристики

Здесь всё практически так же как и в транзисторе с управляющим переходом, за исключением наличия режима обогащения в выходной характеристике.

На стоко-затворной характеристике четко видно, что отрицательное напряжение вызывает режим обеднение и закрытие ключа, а положительное напряжение на затворе – обогащение и большее открытие ключа.

Транзисторы с индуцированным каналом

МОП-транзисторы с индуцированным каналом не проводят ток при отсутствии напряжения на затворе, вернее ток есть, но он крайне мал, т.к. это обратный ток между подложкой и высоколегированными участками стока и истока.

Полевой транзистор с изолированным затвором и индуцированным каналом аналог нормально-разомкнутого ключа, ток не протекает.

При наличии напряжения затвор-исток, т.к. мы рассматриваем n-тип индуцируемого канала то напряжение положительное, под действием поля притягиваются отрицательные носители зарядов в область затвора.

Так появляется «коридор» для электронов от истока к стоку, таким образом, появляется канал, транзистор открывается, и ток через него начинает протекать. Подложка у нас p-типа, в ней основными являются положительные носители зарядов (дырки), отрицательных носителей крайне мало, но под действием поля они отрываются от своих атомов, и начинается их движение. Отсюда отсутствие проводимости при отсутствии напряжения.

Характеристики

Выходная характеристика в точности повторяет такую же у предыдущих разница заключается лишь в том, что напряжения Uзи становятся положительными.

Стоко-затворная характеристика показывает то же самое, отличия опять-таки в напряжениях на затворе.

При рассмотрении вольтамперных характеристик крайне важно внимательно смотреть на величины, прописанные по осям.

Моделирование

На ключ подали напряжение 12 В, а на затворе у нас 0. Ток через транзистор не протекает.

Добавим 1 вольт на затвор, но ток и не думал протекать…

Добавляя по одному вольту я обнаружил, что ток начинает расти с 4в.

Добавив еще 1 Вольт, ток резко возрос до 1.129 А.

В Datasheet указано пороговое напряжение открытия этого транзистора на участке от 2-х до 4-х вольт, а максимальное на затвор-истор от -20, до +20 В, дальнейшие приращения напряжения не дали результатов и на 20 вольтах (несколько миллиампер я не считаю, в данном случае).

Это значит, что транзистор полностью открыт, если бы его не было, ток в этой цепи составил бы 12/10=1.2 А. В дальнейшем я изучал как работает этот транзистор, и выяснил, что на 4-х вольтах он начинает открываться.

Добавляя по 0.1В, я заметил, что с каждой десятой вольта ток растёт всё больше и больше, и уже к 4.6 Вольта транзистор практически полностью открыт, разница с напряжением на затворе в 20В в токе стока всего лишь 41 мА, при 1.1 А – это чепуха.

Этот эксперимент отражает то, что транзистор с индуцированным каналом открывается только при достижении порогового напряжения, что позволяет ему отлично работать в качестве ключа в импульсных схемах. Собственно, IRF740 – один из наиболее распространенных в импульсных блоках питания.

Результаты измерений тока затвора показали, что действительно полевые транзисторы почти не потребляют управляющего тока. При напряжении в 4.6 вольта ток был, всего лишь, 888 нА (нано. ).

При напряжении в 20В он составлял 3.55 мкА (микро). У биполярного транзистора он был бы порядка 10 мА, в зависимости от коэффициента усиления, что в десятки тысяч раз больше чем у полевого.

Не все ключи открываются такими напряжениями, это связано с конструкцией и особенностями схемотехники устройств где они применяются.

Особенности использования ключей с изолированным затвором

Два проводника, а между ними диэлектрик – что это? Это транзистор, собственно затвор имеет паразитную ёмкость, она замедляет процесс переключения транзистора. Это называется плато Миллера, вообще этот вопрос достоин отдельного серьезного материала с точным моделированием, с применением другого софта (не проверял эту особенность в multisim).

Разряженная ёмкость в первый момент времени требует большого зарядного тока, да и редкие управляющие устройства (шим-контроллеры и микроконтроллеры) имеют сильные выходы, поэтому используют драйверы для полевых затворов, как в полевых транзисторах, так и в IGBT (биполярный с изолированным затвором). Это такой усилитель, который преобразует входной сигнал в выходной такой величины и силы тока, достаточный для включения и выключения транзистора. Ток заряда также ограничивается последовательно соединенным с затвором резистором.

При этом некоторые затворы могут управляться и с порта микроконтроллера через резистор (тот же IRF740). Эту тему мы затрагивали в цикле материалов об arduino.

Условные графические изображения

Они напоминают полевые транзисторы с управляющим затвором, но отличаются тем, что на УГО, как и в самом транзисторе, затвор отделен от подложки, а стрелка в центре указывает на тип канала, но направлена от подложки к каналу, если это n-канальный mosfet – в сторону затвора и наоборот.

Для ключей с индуцированным каналом:

Может выглядеть так:

Обратите внимание на англоязычные названия выводов, в datasheet’ах и на схемах часто указываются они.

Для ключей со встроенным каналом:

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника

Источник

Поделиться с друзьями
Радиолюбительские схемы
Adblock
detector