Схема датчика температуры на транзисторе

Трехуровневый датчик температуры

Очень часто люди сталкиваются с задачей измерения температуры. Самым распространенным методом является использование жидкостных термометров. Но, когда дело касается измерения и контроля температуры, к примеру микросхемы или других элементов, рассеивающих много тепла, то в дело вступают миниатюрные электронные датчики температуры. Во многих электронных термометрах в последнее время очень часто используются микроконтроллеры, позволяющие отслеживать малейшие изменения величины. Также устройства, построенные на МК часто имеют очень информативную индикацию измеряемого параметра. Но для начинающих радиолюбителей не так то просто освоить конструирование измерителей на микроконтроллерах, которые к тому же недешево стоят. Поэтому в этой статье я предлагаю вашему вниманию конструкцию простого трехуровневого датчика температуры.
Это устройство можно использовать по разному: например позволит контролировать режим работы микросхемы или мощного элемента в электрических схемах.

Теперь поговорим о том, какие используются термочувствительные элементы (датчики).

1. Во первых терморезистор — это полупроводниковый резистор, в котором используется зависимость электрического сопротивления полупроводникового материала от температуры.
Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления (ТКС), интервал рабочих температур, максимально допустимая мощность рассеяния.

В целом он представляет собой довольно простое устройство, которое способно работать в разных климатических условиях, стойкий к механическим нагрузкам.

Терморезисторы изготавливают в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок. Их размеры обычно составляют от нескольких микрометров до двух сантиметров.

Также существуют другие электронные компоненты, чувствительные к температуре.

2. В качестве термочувствительного элемента также может быть использован полупроводниковый диод, электрическая проводимость которого растет с увеличением температуры.

Но здесь стоит отметить тот факт, что чувствительность к изменению температуры у германиевых диодов выше, чем у кремниевых. Поэтому кремниевые лучше использовать там, где необходимо измерять большие температуры.

Ниже представлена схема устройства, где в качестве термочувствительного элемента использован полупроводниковый диод.

Схема работает следующим образом:
Здесь датчиком температуры является кремниевый диод VD1. Переменным резистором R1 задают ток этого диода так, чтобы при комнатной температуре горели светодиоды HL1 и HL2 (лучше использовать голубой и желтый соответственно). После этого, если нагреть диод, его сопротивление упадет, и увеличится ток на коллекторе транзистора VT1. Вследствие этого возрастет ток, входящий на базу транзистора VT2 и он закроется. В этот момент начинает открываться транзистор VT3 зажигая светодиоды HL1, HL2, HL3. Светодиоды загораются друг за другом таким образом, что при комнатной температуре горят HL1 и HL2, а когда температура повышается, то включается HL3 красного цвета. При температуре окружающей среды меньше комнатной, будет гореть только светодиод HL1. Помните, что транзистор VT1 тоже немного чувствителен к температуре. Его нагрев может усилить яркость светодиодов. Не перепутайте полярность светодиода HL3, должно быть как на схеме.

В схеме использованы стабилитроны (диоды Зеннера) ZD1, ZD2, ZD3 на 5.6 В, без них светодиоды будут гореть одновременно. Резисторы R6, R7, R8 подобраны так, чтобы для каждого светодиода обеспечить личный диапазон индикации температуры.

Можно упростить схему, используя лишь один светодиод. В этом случае измеряемая температура наблюдается по изменению яркости свечения светодиода (цвет выбирайте по вашему вкусу).

Также это устройство может работать в паре с охлаждающим вентилятором, изменяя скорость его вращения.
Для этого схема упрощается подобным образом:

Источник

Термодатчик на транзисторе

В этой статье я расскажу об использовании биполярного транзистора в качестве датчика температуры. Описание приводится в контексте использования его для измерения температуры радиатора (теплоотвода).

Главное преимущество датчика температуры на транзисторе в том, что он обеспечивает хороший тепловой контакт с радиатором и его относительно просто на нем закрепить и стоит биполярный транзистор не дорого.

Ниже показана схема включения транзистора и узел обработки сигнала на ОУ. VT1 это и есть транзистор-термодатчик, который крепится на радиатор.

Транзистор намеренно используется p-n-p структуры т.к. радиатор часто соединяется с общим проводом схемы, а коллектор транзистора в корпусе TO-220 соединен с теплоотводной пластиной и при креплении транзистора нет необходимости электрически изолировать его от радиатора, что дополнительно упрощает конструкцию.

Падение напряжения на p-n переходе изменяется при увеличении его температуры с крутизной примерно -2 мВ/градус (т.е. уменьшается с ростом температуры). Такое малое изменение напряжения не очень удобно обрабатывать АЦП, более того удобнее когда зависимость прямая т.е. при увеличении температуры сигнал температуры растет.

Приведенная схема смещает, инвертирует и усиливает сигнал с транзистора, обеспечивая увеличение выходного напряжения с ростом температуры, и работает следующим образом.

Из опорного напряжения, формируемого делителем R1R2, вычитается падение напряжения на транзисторе и результат вычитания усиливается. Опорное напряжения выбирается чуть выше падения напряжения на транзисторе при температуре 25 градусов, чем обеспечивается измерение напряжения ниже 25 градусов.

Коэффициент усиления схемы определяется соотношением R5/R4 + 1 и для данной схемы равен 11. Итоговая крутизна сигнала температуры получается 2*11=22мВ/градус. Таким образом для обеспечения измерения температуры от 0 градусов выходной сигнал при 25 градусах должен быть не менее 25*0,022=0,55В. Превышение напряжения смещения над падением на транзисторе при 25 градусах должно быть не менее 0,05В.

Падение напряжения на транзисторе при 25 градусах составляет 0,5-0,6В и зависит от конкретного типа транзистора и тока через него и наверняка подобрать опорное напряжение «с ходу» не получится, поэтому на этапе отладки требуется подбор резисторов R1R2 для конкретного типа транзистора и тока через него, от одного транзистора к другому это значение может меняться, но это уже может быть скорректировано программными методами.

Ток через транзистор определяется сопротивлением резистора R3, в данной схеме ток примерно равен 15мА. Рекомендуемое значение тока через транзистор 10-20мА.

Приведенная схема адаптирована под АЦП с опорным напряжением 3,3В, но может быть использована и для 5В опорного напряжения, для этого необходимо увеличить коэффициент усиления схемы, исходя из требуемого диапазона температур.

Вам понравится:  Распределительный коллектор для отопления на 5 контуров схема подключения

На элементах R6VD1 собрана схема ограничения выходного напряжения на случай нештатных ситуаций, например обрыва провода к транзистору. Если напряжение питания ОУ не превышает опорное напряжение АЦП, то их можно исключить.

В качестве DA1 может использовать любой ОУ, обеспечивающий работу при однополярном питании и входном напряжение от 0В. Например дешевый и распространенный LM358.

В качестве транзистора может использоваться любой не составной транзистор p-n-p структуры.

Источник

Датчик температуры

Зависимость падения напряжения на p-n переходе от температуры было замечено сразу после создания самого этого перехода. Это свойство полупроводников используется в электронных термометрах, датчиках температуры, термореле и т.д.

Простейшим датчиком температуры является p-n переход кремниевого диода, температурный коэффициент напряжения, которого равен, примерно, 3 мВ/°C, а прямое падение напряжения находится в районе 0,7В. Работать с таким маленьким напряжением неудобно, поэтому в качестве термозависимого элемента лучше использовать p-n переходы транзистора, добавив к нему базовый делитель напряжения. Полученный двухполюсник обладает свойствами цепочки диодов, т.е. падение напряжения на нем можно устанавливать намного больше, чем 0,7В. Зависит оно от соотношения базовых резисторов R1 и R2 см. рис. 1.

Обладая отрицательным температурным коэффициентом сопротивления, этот двухполюсник нашел применение в схеме питания варикапов. При повышении температуры, емкость варикапов начинает увеличиваться, но одновременно уменьшается падение напряжения на двухполюснике VT1, R1,R2, что ведет к увеличению напряжения на переменном резисторе и соответственно на варикапе, уменьшая его емкость. Таким образом, достигается температурная стабилизация резонансной частоты колебательного контура. На рисунке 2 показана схема двухполюсника, который можно использовать в качестве термодатчика в схемах электронных термореле и термометрах. Здесь есть одно неудобство, кристалл транзистора КТ315 размещен в пластмассовом корпусе, что повышает инерцию измерения температуры или срабатывания реле. И второе, это неудобство крепления его к объекту, температуру которого необходимо отслеживать. Например, для отслеживания температуры теплоотводов мощных ПП, лучше применить в качестве термодатчика транзистор КТ814. Конструкция этого транзистора позволяет крепить его непосредственно к радиатору, находящемуся под потенциалом земли, всего одним винтиком. Такой датчик используется в схеме терморегулятора для вентилятора, размещенной на сайте www. ixbt.com/spu/fan-thermal-control.shtml

Терморегулятор для вентилятора.

На рисунке 4 показана практическая схема для вентилятора охлаждения блока питания. Применение операционного усилителя средней мощности К157УД1 в качестве компаратора, позволило подключить пару вентиляторов от блока питания компьютера непосредственно на выход микросхемы, выходной ток которой, равен 0,3А. Температуру включения вентиляторов устанавливают резистором R5. Схема работает следующим образом. При нормальной температуре теплоотвода напряжение на выводе 9 микросхемы DA1 должно быть больше, чем на выводе 8. При этом на выходе DA1, выводе 6, будет потенциал близкий к напряжению питания схемы. Напряжение на вентиляторах при таких условиях будет практически равно «0». Вентиляторы выключены. При повышении температуры теплоотводов будет повышаться и температура транзистора VT1, что в свою очередь вызовет уменьшение напряжения на неинвертирующем входе 8 микросхемы DA1. Как только это напряжение будет меньше напряжения, установленного резистором R5, состояние компаратора изменится и на его выходе напряжение упадет примерно до потенциала земли. Вентиляторы включатся. Резистор R7 обеспечивает небольшой гистерезис схемы, что исключает неопределенное состояние выходного напряжения на выходе DA1 при равенстве входных напряжений. Плату терморегулятора лучше установить прямо на контролируемом радиаторе, чтобы его микросхема тоже обдувалась вентилятором. Транзистор VT1 соединяется с платой тремя проводами и устанавливается в непосредственной близости от мощных ПП.

Источник

Термодатчики на диодах в схемах на МК

Данный терморегулятор не только прост, но надежен, так как в нем нет механически размыкающихся контактов. Роль ключевого элемента выполняет тиристор VS1 типа КУ202Н. В то же время его схема не содержит дефицитных деталей. Вместо терморезистора я использую германиевый транзистор, любой из серии МП39— МП42. Базовый вывод этого транзистора не использую, его можно удалить или надежно изолировать.

Выбор других деталей для данной схемы также не представляет особых проблем, схема не слишком критична к типу используемых элементов. Практически все необходимое можно найти в любом старом транзисторном или ламповом приемнике. Стабилитрон Д814А (VD1) можно заменить на Д814Б или любой другой с на­пряжением стабилизации от 7 до 9 В. Транзистор VT2 — типа КТ315 с любым буквенным индексом. Тиристор VS1 — типа КУ202 или КУ201 с буквенным индексом от «К» до «Н». Диоды выпрямительного моста /Д2. /Д5— типа КД202 с буквой «Ж», «И». «Н». Последние можно заменить на Д226Б или «В», но при этом мощность нагревателя не должна преного моста /Д2. /Д5— типа КД202 с буквой «Ж», «И». «Н». Последние можно заменить на Д226Б или «В», но при этом мощность нагревателя не должна превышать 60 Вт. Если использовать по два диода Д226 в каждом плече моста, то мощность подключаемого к регулятору нагревателя можно увеличить до 130 Вт. С диодами типа КД202 мощность может быть до 600 Вт.

Величины сопротивлений рези­сторов также могут несколько от­личаться от приведенных на схеме рис. 1. R1 — регулировка температуры — переменный ре­зистор любого типа от 33 до 47 кОм. R2 — типа МЛТ-0,5 или 0,25 от 1,5 до 1,8 МОм. R3 и R4 — того же типа — 5,6. 6,8 кОм и 47. 51 кОм соответственно. R5 — МЛТ-2 от 18 до 20 кОм.

Детали регулятора температуры монтируют на печатной плате (рис. 2) из фольгированного гетинакса или текстолита толщиной 1,5. 2,0 мм. Проводники вырезают резаком по линейке. Расположение деталей на лицевой стороне платы показано на рис. 3. Размеры платы и рисунок проводников позволяют устанавливать на ней диоды как типа КД202, так и типа Д226.

Датчик температуры VT1 необ­ходимо обязательно поместить в изолирующую тонкостенную пластмассовую трубку подходящего диаметра и соединить с платой парой свитых между собой проводников. Ручка на оси пере­менного резистора R1 также обя­зательно должна быть пластмас­совой.

Вам понравится:  Резистор 1 ком 50вт

Датчики температуры для микроконтроллера

На данный момент многие схемы строятся на микроконтроллерах, сюда же можно отнести и разнообразные измерители температуры, в которых могут быть применены полупроводниковые датчики при условии, что температура при их эксплуатации не превысит 125°C.

Поскольку градуирование температурных измерителей происходит ещё на заводе, калибровать и настраивать датчики нет никакой необходимости. Получаемые от них результаты в виде цифровых данных поступают в микроконтроллер.

Применение полученной информации зависит от программного наполнения контроллера.

Помимо прочего, такие датчики могут работать в термостатном режиме, то есть (при заранее заданной программе) включаться или выключаться по достижении определённой температуры.

Однако, если опорными станут другие температурные показатели, программу придётся переписывать.

Arduino: Делаем самостоятельно датчик температуры

Температура является едва ли не основным измеряемым параметром в промышленной и хозяйственной деятельности. Вместе с тем, мало просматривается экономически обоснованных реализации датчиков температуры даже в диапазоне -50 +50 Град С , столь обычном и привычным для многих применений. Известны на рынке датчики DS18B20 фирмы Dallas , заявленная точность которых около 0,5 Град. Эти датчики были рассчитаны на построение микросетей (MicroLAN) с осуществлением адресного опроса каждого датчика со стороны микроконтроллерного устройства по протоколу 1-Wire. Однако, реализаций таких сетевых решений, когда линию связи делили бы десяток и более таких устройств, практически не встречается. Аналогична ситуация и температурными датчиками протокола I 2 C фирмы Philips, например такими, как LM75. Все это вызывает определенное недоверие к проработанности схемотехники указанных датчиков температуры. Что же делать, если необходимо иметь несколько точек измерения температуры, опрашиваемых с помощью микроконтроллера?

В эпоху аналоговых электронных термометров нередко можно было встретить схемы с диодными датчиками температуры. Уместно, к примеру, привести схему из справочника радиолюбителя [1 ] . В ней, в качестве датчика температуры, используется обычный кремниевый диод, а точность измерения, при этом, составляет 0,3 Град.

Если посмотреть на эту схему внимательно, можно понять, что точность температурного измерения достигается здесь с помощь стабилизации напряжения питания схемы и стабилизацией тока отдельных ее узлов.

В качестве Ардуино устройства используем плату TE-MINI328 , от московской , которая на проверку оказалась совместима с Ардуино серии Nano.https://www.terraelectronica.ru/catalog_info.php?CODE=1041000

Принципиальная схема платы:

Практически в каждой реализации платы Ардуино имеется вывод источника опорного напряжения встроенного АЦП. Этот источник имеет уровень напряжения 1,1В у ардуино нано. Для других плат он может быть другим , например 2,54В, что зависит в общем от типа используемого микроконтроллера. Этот источник стабильного напряжения можно использовать как раз для питания температурного датчика, хотя и следует иметь в виду его относительно небольшой выходной ток.

Платформа Ардуино удобна тем, что на ней легко реализуются базовые принципы структурного программирования: наследование, полиморфизм и инкапсуляция. В качестве прародителя целесообразно взять готовую работающую программу (Sketch) и , на ее основе, дополнить необходимым функционалом, который может присутствовать также во встроенном пакете библиотек. В качестве базы в данном примере была использована программа выложенная в открытый доступ коллегами из фирмы OLIMEX (Болгария) , которая реализует часы реального времени на базе микросхемы PCF8563, являющаяся наиболее дешевой из однокристальных часов реального времени (https://www.olimex.com/Products/Duino/AVR/OLIMEXINO-328/resources/OLIMEXINO_328_MOD_RTC_Demo.zip) [2]. Далее эта программа была дополнена функцией работы с LCD индикатором известной системы команд HD44780 c четырех проводной шиной команд/данных (имеется во встроенной библиотеке Ардуино). Имея в системе этот индикатор, нам легче будут в дальнейшем провести калибровку нашего температурного датчика, и наблюдать за температурой и временем даже не используя монитор последовательного порта, который встроен в среду Ардуино.

При работе с датчиками температуры на основе полупроводникового диода используется тот факт, что падение напряжения на прямо смещенном полупроводниковом диоде линейно зависит от температуры. Примерный вид такой зависимости для кремниевого диода показан на рис 2.


РИС 2

Для изготовления диодного температурного датчика возьмем популярный импортный диод 1N4148, хотя подойдут и аналогичные отечественные, например КД521 или Д220. По нашим наблюдениям хорошей линейностью вольт- температурной характеристикой обладают и многие германиевые диоды, например Д9, у которых падение напряжения при прямом смещении оказывается раза в 2 меньше, чем у кремниевых. Поскольку работать диодный датчик будет в области малых токов, примерно 100 МкА, следует тщательно изолировать проводные выводы с помощью виниловой трубки, торцы которой следует оплавить, например, с помощью промышленного фена или загермитизировать силиконовым герметиком или применив клеевый пистолет. Воспользоваться можно и термоусадочной трубкой соответствующего диаметра. Все это необходимо для того, чтобы вода ни в коем случае не могла попасть внутрь изоляции, что неизбежно привело бы к искажениям результатов измерений. Также в расчет следует взять и тот факт, что диоды со стеклянным корпусом могут реагировать на попадание света внутрь корпуса, отчего определенным преимуществом будут обладать экземпляры с корпусом, покрытым черной краской (например КД503 Д220 и т.п.) Как указывалось выше для Ардуино Nano уровень опорного напряжения составляет 1,1 В. Поскольку падение напряжения на кремниевом диоде при комнатной температуре и току смещения 100МкА составляет прмерно 500мВ диапазон использования встроенного АЦП микроконтроллера ATMega328 , перекрывает диапазон температур от -50 до +50 Град С, так как падение напряжения на диоде не выйдет за пределы 0—1,1 В. Правда точность измерений в этом случае лучше чем 1 град ожидать не приходится. Для указанной схемы питания датчика, вольт- температурная характеристика будет иметь вид рис2. Т.е. , с повышением температуры, падение напряжения уменьшается. Зависимость температуры Т от напряжения Ud очевидно описывается уравнением вида:

Прочие сферы применения

Хотя на сегодняшний день выбор температурных датчиков весьма широк, никто не забывает про их диодный вариант, который достаточно часто применяется в электроутюгах, электрокаминах и электронике в самом широком её смысле.

Несмотря на ограничения по температурному режиму диодные датчики имеют свои значительные плюсы:

— запросто подойдут к огромному числу электронных приборов;

— превосходная чувствительность и точность.

Благодаря всем этим качествам область применения датчиков данного типа растёт из года в год.

Вам понравится:  Схема подключения поплавка дренажного насоса джилекс

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Диод как датчик температуры : 1 комментарий

Германевые диоды типа Д9, Д2 — прекрасно работают при обратном включении, через сопротивление (реостат) 100 кОм ( примерно такое же обратное сопротивление диода), напр.питания 5-10 вольт. В средней точке получается примерно половина напряжения питания, которое можно сразу подавать на вход цифровых микросхем КМОП (561 ла7, тл2,…) и использовать как термостат вкл-выкл. Или создать «мост» диод+переменный резистор и делитель из двух резисторов, между которыми включить микроамперметр и получим термометр.

  • Автор: Мария Сухоруких
  • Распечатать

(1 голос, среднее: 1 из 5)

Поделитесь с друзьями!

Термодатчики на диодах в схемах на МК

Измерение температуры с помощью полупроводниковых диодов представляет особый интерес для массового применения, тк. они доступнее и дешевле других датчиков и имеют хорошую повторяемость параметров.

Для измерений используется прямая ветвь ВАХ диодов, поскольку обратная ветвь менее стабильна. Нелинейность показаний легко учитывается двумя программными методами. Во-первых, можно плавно аппроксимировать температурную характеристику эмпирической формулой, во-вторых, можно использовать дискретную таблицу поправок с сохранением коэффициентов в ПЗУ МК.

В термодатчиках выгодно применять германиевые (а не кремниевые) диоды, поскольку у них сильнее проявляется зависимость параметров от температуры. Однако устаревшие германиевые диоды типа Д2Б, Д7Ж, выпущенные 40…50 лет назад, уже не обладают заявленными техническими параметрами. Сточки зрения надёжности они давно выработали ресурс хранения и эксплуатации, что в любой момент грозит выходом элемента из строя.

Считается, что термодатчики на диодах обеспечивают приемлемую линейность измерения температуры в диапазоне 0…+ 100°С (по некоторым оценкам -60…+ 150°С). Для достоверности достаточно откалиброваться в двух крайних точках диапазона по образцовому термометру ТЛ-4 ГОСТ 28498-90. Если таковой отсутствует, то используют … обычную очищенную воду. Известно, что температуру 0°С можно получить в момент образования льда (смесь воды с льдинками в морозильной камере холодильника). Температура +100°С соответствует кипящей воде в кухонном чайнике. Контрольная проверка — температура тела человека.

Электрический режим работы диодов должен быть стабильным во времени и максимально не нагруженным по току (Рис. 3.66, а…д), в связи с чем уменьшаются ошибки измерений, связанные с саморазогревом кристалла.

а) высокоомный резистор /?/служит своеобразным генератором стабильного тока для термодатчика VD1. Напряжение на входе МК пропорционально температуре окружающей среды в диапазоне-50…+100°С. Коэффициент преобразования составляет 2…2.5 мВ/°С, погрешность меньше 1%. Конденсатор С/снижает уровень помех при большом удалении диода VD1 от МК;

б) к двум каналам АЦП МК подключаются одинаковые цепи, но измеряемые напряжения будут разными, поскольку VD1 служит термодатчиком, а VD2 — обычным диодом. Используется дифференциальный режим работы АЦП. Фиксируются не абсолютные температуры, а их разность в двух удалённых местах, например, в помещении

Схемы подключения диодных термодатчиков к МК <окончание)’.

в) усилитель DA1 расширяет динамический диапазон сигнала, поступающего от термодатчика на диоде VD1. Резистором R2 калибруется начальное значение, резистором R6 — диапазон температур. Чтобы повысить линейность по краям, ОУ Z)/l/следует применить «rail-to-rail»;

г) «нижнее» включение диодов Шоттки VDI…VD4, выступающих в качестве термодатчиков. Их последовательное соединение повышает чувствительность в четыре раза. Температура определяется табличным методом по замерам напряжений АЦП МК. Резистор RI имеет высокое сопротивление, что снижает протекающий через термодатчики ток и устраняет их саморазогрев. Резистор обеспечивает оптимальное входное сопротивление для АЦП МК;

д) «верхнее» включение кремниевых диодов VDI, VD2, выступающих в качестве термодатчиков. Для нормальной работы АЦП МК требуется, чтобы на вход подавалось напряжение, близкое к питанию +5 В. Для сравнения, в схемах с «нижним» включением диодов можно подавать на вход более низкое (а значит и более стабильное) напряжение +1.2…+2.5 В от внешнего ИОН. Возможная замена диодов VD1, VD2— 1N4148.

  • Предыдущая запись: Датчики атмосферного давления реализация на МК
  • Следующая запись: Неисправности факсов

Похожие посты:

Диод как датчик температуры

Диод — наипростейший по своей комплектации прибор, обладающий свойствами полупроводника.

Между двумя крайностями диода (донорной и акцепторной) пролегает область пространственного заряда, иначе: p-n-переход. Этот «мост» обеспечивает проникновение электронов из одной части в другую, поэтому, в силу разноимённости составляющих его зарядов, внутри диода возникает довольно малый по силе, но всё-таки ток. Движение электронов по диоду происходит только в одну сторону. Обратный ход конечно есть, но совершенно незначительный, а при попытке подключить в этом направлении источник питания диод запирается обратным напряжением. Это увеличивает плотность вещества и возникает диффузия. Кстати, именно по этой причине диод носит название полупроводникового вентиля (в одну сторону движение есть, в другую — нет).

Если попытаться повысить температуру диода, то количество неосновных носителей (электронов двигающихся в обратном основному направлении) увеличится, а p-n-переход начнёт разрушаться.

Именно поэтому рабочая температура полупроводников имеет определённые ограничения

Принцип взаимодействия между падением напряжения на диодном p-n-переходе и температурой самого диода была выявлена практически сразу после того, как он был сконструирован.

В результате p-n-переход диода из кремния — это наиболее простой температурный датчик. Его ТКН (температурный коэффициент напряжения) составляет 3 милливольта на градус цельсия, а точка прямого падения напряжения — около 0,7В.

Для нормальной работы данный уровень напряжения излишне мало, поэтому чаще используется не сам диод, а транзисторные p-n-переходы в комплекте с базовым делителем напряжения.

В результате, конструкция по своим качествам соответствует целой последовательности диодов. Как итог, показатель по падению напряжения может быть гораздо большим, чем 0,7В.

Поскольку ТКС (температурный коэффициент сопротивления) диода является отрицательным (- 2mV/°C), то он оказался весьма актуальным для использования в варикапах, где ему отводится роль стабилизатора резонансной частоты колебательного контура. Контроль осуществляется при помощи температуры.

Источник

Поделиться с друзьями
Радиолюбительские схемы
Adblock
detector