Регулятор напряжения для лампы накаливания 220в своими руками

Как сделать диммер на 12 и 220 В своими руками?

Для регулировки интенсивности освещения можно использовать специальные выключатели – диммеры. Они позволяют менять силу светового потока от максимуму до полного выключения. Тем не менее, заводские диммеры обладают рядом недостатков, среди которых и довольно высокая стоимость. Чтобы решить проблему, вы можете изготовить диммер своими руками на 12 и 220 Вольт, в зависимости от типа цепей, для которых вы собираетесь его использовать.

Что понадобится для работы?

Диммер представляет собой регулятор яркости, который позволяет поворотом ручки или нажатием клавиши изменить интенсивность света в комнате.

По типу регулировки мощности свечения они бывают:

  • резистивные;
  • трансформаторные;
  • полупроводниковые.

Первый вариант наиболее простой, но экономным его назвать нельзя, поскольку снижение яркости свечения не изменяет мощность нагрузки. Другие два куда более эффективны, но имеют и более сложную конструкцию. В зависимости от принципа действия и будет зависеть то, какие детали включает в себя диммер. Чтобы не отвлекаться от работы всем необходимым лучше запастись заранее.

Для рассматриваемых далее примеров вам пригодятся такие электронные элементы:

  • Симистор – представляет собой ключ в схеме, используется для открытия или запирания участка цепи от протекания электротока. Применяется в цепях с питающим напряжением в 220В, имеет три вывода – два силовых и один управляющий.
  • Тиристор – также устанавливается в качестве ключа и переводится в устойчивое состояние, необходимое для работы схемы.
  • Микросхема – более сложный элемент электронной схемы со своей логикой и особенностью управления.
  • Динистор – также является полупроводниковым элементом, пропускающим электрический ток в двух направлениях.
  • Диод – однонаправленный полупроводник, который открывается от прямого протекания электротока и запирается от обратного.
  • Конденсатор – емкостной элемент, основная задача которого накопление нужной величины заряда на пластинах. Для изготовления самодельных диммеров лучше использовать неполярную модель.
  • Резисторы – представляют собой активное сопротивление, для диммеров используются в делителях напряжения и токозадающих цепях. В схемах пригодятся как постоянные, так и переменные резисторы.
  • Светодиоды – пригодятся для обеспечения световой индикации в диммере.

В зависимости от конкретной схемы и устройства диммера, будет зависеть и набор необходимых деталей, все из вышеперечисленного приобретать не нужно. Заметьте, что некоторые из них можно выпаять их старых телевизоров радиоприемников и прочих бытовых приборов, которые вами больше не используются. Далее рассмотрим примеры конкретных схем.

На симисторе

Такой диммер будет работать от напряжения сети 220В напрямую, схема отличается относительной простотой, поэтому собрать ее под силу даже начинающему радиолюбителю. Принцип регулирования напряжения в этом диммере заключается в отсекании определенного полупериода синусоиды, благодаря чему снижение электрического параметра приводит к реальной экономии электроэнергии.

Посмотрите на схему подключения, симистор – это электронный ключ, который управляется сигналами с динистора, включенного во времязадающую R — C цепочку.

Схема диммера на симисторе

Работа схемы заключается в следующем: после подключения фазы 220В к диммеру, на времязадающую цепочку C1 – R1 – R2 будет подано напряжение, так как динистор VS1 закрыт, ток протекает только через конденсатор и резисторы.

Вам понравится:  Три резистора с одинаковыми сопротивлениями соединены последовательно

В зависимости от установленного поворотным резистором омического сопротивления будет зависеть и величина тока. От величины тока зависит и скорость заряда конденсатора C1, при достижении нужной величины потенциала на котором произойдет открытие динистора.

Через цепь открывшегося динистора на симистор VS2 подается сигнал открытия, срабатывает ключ, пропускающий определенную часть полупериода к нагрузке. Ток удержания в симисторе не возникает, поэтому с разрядом конденсатора вся цепь переходит в исходное состояние вплоть до следующего полупериода, который откроет ключ и подаст на нагрузку потенциал.

Изменение синусоиды

Как видите, такая схема диммера осуществляет регулировку яркости «обрезая» форму синусоиды до определенного импульса, уменьшая и величину напряжения, и его действующее значение. В виду нестабильного колебания кривой такую модель светорегулятора однозначно можно подключать к лампам накаливания, поскольку они не восприимчивы к форме напряжения. Что касается светодиодных и люминесцентных моделей, их нужно тестировать на уже готовом диммере.

Чтобы изготовить такой диммер для практического использования, лучше взять печатную плату. Так как при стационарной установке при регулировании напряжения вам понадобится жесткое крепление к конструкции. Ее можно как заказать, так и изготовить самостоятельно.

Процесс сборки состоит из следующих этапов:

  • Перенесите эскиз на фольгированную плату, в местах монтажа соответствующих деталей сделайте разметку. Дорожки наведите нитрокраской и протравите плату диммера в хлорном железе.

Протравите плату

  • В процессе травки плату нужно переворачивать, а после окончания, достаньте и полудите ее, промойте спиртом и просверлите отверстия для ножек.

Сделайте отверстия

  • Поместите ножки радиодеталей в просверленные отверстия под них.

Поместите ножки радиодеталей в отверстия

Если вы разметили монтажные площадки, придерживайтесь данной разметки.

  • Разогрейте паяльник и нанесите слой олова с обратной стороны платы диммера.

Припаяйте ножки радиодеталей

  • Протестируйте собранную конструкцию на лампе накаливания, если она работает как надо, можете собирать диммер в корпус.

Опробуйте работоспособность на лампе накаливания

На тиристорах

Такая модель диммера на тиристорах по принципу действия идентична предыдущему варианту, но вместо симистора в роли ключа выступают тиристоры. Из-за особенностей работы тиристора целесообразнее устанавливать такое электронное устройство для каждой полуволны синусоиды напряжения.

Пример схемы такого диммера приведен на рисунке ниже:

Схема регулятора на тиристорах

Начнем разбор работы схемы с положительного полупериода кривой напряжения – конденсатор C1 заряжается по цепи из токоограничивающих резисторов R3 — R4 — R5. Когда величина заряда достигнет порогового значения для динистора V3, он открывается и подает управляющий импульс на тиристор V1. В режиме ключа V1 начинает пропускать напряжение к нагрузке, выдавая определенный участок кривой напряжения.

При отрицательном полупериоде синусоиды V1 запирается, ток через него протекать не будет, а на конденсатор C2 через токозадающую цепь R1 – R2 — R5 будет поступать заряд, который со временем откроет динистор V4. Через него будет протекать ток на управляющий электрод тиристора V2, после открытия транзистора на нагрузку пойдет такая же часть полупериода синусоиды, но с противоположным знаком.

Такой регулятор мощности светового потока может использоваться не только для изменения яркости освещения ламп, но и для управления температурой нагрева паяльника и других устройств.

С использованием конденсаторов

Такой диммер работает только в качестве переключателя, который изменяет путь протекания тока, питающего нагрузку. Но и схема кнопочного диммера довольно проста и не потребует никаких специфических элементов.

Вам понравится:  Розетка с фиксацией вилки электрическая

Схема диммера на конденсаторе

Принцип его работы заключается в переведении переключателя SA1 в одно из трех возможных положений:

  • выключено – цепь полностью разорвана, лампа не горит или проходной выключатель выдает логический ноль в цепи;
  • закорочено на лампу – в цепи подключения диммера отсутствуют какие-либо элементы кроме электрической лампы (прибор освещения горит на полную мощность);
  • подключено через R – C цепь – выдает только определенный процент яркости освещения.

В зависимости от параметров резистора и емкостного элемента будут зависеть напряжение и яркость свечения. Этот диммер используется для регулировки освещения путем рассеивания части мощности в R – C цепи, поэтому никакой экономии от снижения вы не получите.

На микросхеме

В диммере, собранном на микросхеме, изменение величины напряжения происходит для потребителей на 12В – светодиодных лент, люминесцентных лам и прочего оборудования. Один из вариантов схемы приведен на рисунке ниже.

Схема диммера на микросхеме

Как видите, управление может осуществляться и за счет датчика, подключенного к выводу 2, и посредством регулируемого резистора VR1.

Микросхема с вывода 3 выдает управляющий сигнал через сопротивление R2 на базу транзистора VT1. Изменяя величину напряжения переменным резистором VR1, на выходе 3 микросхемы изменяется уровень потенциала, который увеличивает или уменьшает пропускную способность транзистора. При этом меняется и яркость светодиодов, если управление происходит светодиодными светильниками.

Источник

Регулятор напряжения для лампы накаливания 220в своими руками

Универсальный регулятор мощности и яркости.

Автор: Провада Юрий Петрович aka Simurg
Опубликовано 10.08.2010

Вашему вниманию предлагается универсальный регулятор мощности с новым видом регулирования угла с двух сторон синуса. В качестве нагрузки можно подключать любой потребитель (постоянного тока) — коллекторные двигатели, паяльники, лампы накаливания любого напряжения, энергосберегающие лампы. А питать регулятор на любое переменное напряжение.
Ну теперь по порядку:

В настоящее время широкое распространение получили энергосберегающие лампы. Чтобы пользоваться светильником как ночником, или дежурной подсветкой в темном коридоре надо снизить их яркость. Можно простыми средствами регулировать их яркость а соответственно и ресурс (который возрастает до десяти раз) . Простым тиристорным регулятором менять яркость этих ламп нежелательно. В схемах электронных балластов, которые применяются в энергосберегающих лампах, на выходе после моста стоит электролитический конденсатор, который плохо работает с тиристорными регуляторами (большой импульсный зарядный ток приводит к их нагреву). В предлагаемых Вашему вниманию схемах регуляторов яркости применён принцип регулирования угла с двух сторон синусоиды, вначале и в конце, что позволяет снизить нагрузку на электролитический конденсатор. Целью является простота регулятора, минимальное тепловыделение, повторяемость, дальнейшая возможность модернизации и малые габариты. На выход регулятора можно подключать в том числе обычные лампы накаливания до 25 ватт, напряжением даже на 12 вольт (базовая схема) и паяльники до 150 ватт 220 в. Рассмотрим три схемы под единым названием «Бесплатный ночник»,: да и дневник тоже.
Первый вариант схемы «базовый» на основе которого можно построить ряд других доработок. Принцип работы схемы предельно прост, на выходе TL431 получаем прямоугольные импульсы для управления полевым транзистором ( Может быть любой на 400в и ток от 2А и выше, например BUZ90)
«Базовый» вариант схемы:

Принцип регулирования угла с двух сторон синусоиды вначале и в конце:

Импульсный заряд электролитического конденсатора происходит в очень короткие моменты, и только через один импульс плавного дозаряда, что не вызывает его нагрева, а пульсации частотой уже 200 Гц практически не заметны на самой лампе.
Заряд конденсатора:

Настройка заключается в подборе резистора R5 по желаемому диапазону регулировки (от 0% до 100% или от 60% до 100% или от 0% до 40%) При работе лампы на 60% мощности её ресурс резко возрастает.
Если в данной схеме включить светодиод в прямом включении последовательно со стабилитроном, он будет являться индикатором мощности (Его применение желательно когда регулятор используется для паяльника. Яркость его свечения указывает на выходную мощность).

В процессе эксплуатации данной схемы было замечено неустойчивое включение некоторых типов энергосберегающих ламп, которым необходим был начальный прогрев. Далее они работали и регулировались нормально. В связи с этим появилась схема с предварительным разогревом.
Схема с предварительным разогревом:

В момент включения С2 разряжен и напряжение на затворе открывает Т2, который в свою очередь шунтирует вход TL431, на выходе которой устанавливается высокий уровень 12в. Т1 открывается и подает на лампу всё напряжение в течении времени определяемой цепью R6, C2. Лампа быстро разогревается и готова к работе на пониженном напряжении питания без морганий и погасания. D7 необходим для быстрого разряда C2 при выключении регулятора.

Выше приведенные схемы не могут работать на нагрузку более 2-х ламп без нагрева транзистора Т1, (он устанавливается без радиатора), так как управление им происходит без применения драйвера. Для подключения более 3-х ламп предлагается схема с несложным драйвером.
Схема с драйвером:

В «базовую» схему добавился формирователь импульсов на Т2 и драйвер на Т3 — Т5. Транзистор Т1 IRF740. Данная схема показала хорошие результаты не только при работе на энергосберегающую лампу но и на обычную лампу накаливания, на паяльник 150 ватт.

Все приведенные схемы могут работать на любом напряжении от

250в. Необходимо только подобрать R1 (его можно убрать со стабилитроном если напряжение до 20в) и R2. Данные схемы очень надежны и работают у меня уже 5 лет не выключаясь на подсветку ванной комнаты. И лампу за 5 лет ни разу еще не менял! Также у человека «базовая» схема работает на движок подачи проволоки в сварочном полуавтомате.

Вот Вы и спросите: «А почему название «Бесплатный ночник»?» А я Вам расскажу. Собираете, например «базовую» схему, выставляете яркость немного больше минимума устойчивой работы лампы. Затем отключив все потребители в доме (И холодильник тоже). Обычно это ночью. Идёте на площадку — засовываете лапы в распределительный щиток:, ой в смысле смотрите на счётчик. И что мы видим — диск медленно доходит до язычка компенсации самохода (внутри у него такая штука есть) и :. О С Т А Н А В Л И В А Е Т С Я . А свет то у Вас горит — целых три лампы подсветки — ванная, коридор и кухня. А тут и простор для дальнейшей модернизации. На кухне я сделал без переменного резистора, а подобрал по минимуму устойчивого свечения. А штатный выключатель в лампе просто закорачивает сток — исток выходного транзистора, включая лампу на максимум. Очень удобно.

Источник

Поделиться с друзьями
Радиолюбительские схемы
Adblock
detector