Регулятор громкости тембра на микросхеме

Регулятор тембра и громкости на PT2313 (Arduino)

Микросхема PT2313 — аудиопроцессор который используется как предварительный усилитель, микросхема PT2313 имеет три стерео входа и четыре выхода (спевдоквадро), так же дополнительно имеется электронная регулировка громкости и тембра ВЧ и НЧ. Управление аудиопроцессором осуществляется по шине I2C в моем случает при помощи Arduino Nano. Уст-во содержит минимальный набор внешних элементов, после сборке в настройке не нуждается. Номинальное питание 9 В.

Основные характеристики аудипроцессора PT2313:

  • Напряжение питания от 6 до 10 В, номинальное 9 В
  • КНИ не более 0.1 %
  • Регулировка громкости от -63 до 0 дБ
  • Регулировка тембра ВЧ и НЧ ±14 дБ
  • Регулировка баланса ±8 дБ (ограничено программно)
  • Максимальный ток потребления 11 мА

Уст-во содержит два основных блока, это плата Arduino Nano (Uno) и блок аудипроцессора. Управление аудипроцессором осуществляется четырьмя кнопками. При помощи кнопки MENU можно осуществить перебор основных параметров, громкость (Volume), тембр НЧ (Bass), тембр ВЧ (Trebble), баланс (Balance). Кнопки «+» и «-» позволяют изменять параметры громкости, тембра и баланса. Кнопка IN предназначена для переключения входа 0…2.

Вся необходимая информация выводится LCD дисплей 1602, на базе контроллера HD44780. Все настройки сохраняются в энергонезависимую память.

Плата Пин SDA Пин SCL
Arduino Uno, Nano, Pro и Pro Mini — PT2313 (GND — 26 вывод) A4 — 27 вывод PT2313 A5 — 28 вывод PT2313

Обновлено: 10.01.2022 в 21:04 | Просмотров: 31 280

TDA7449 + LCD дисплей 84×48 Nokia 5110 (Arduino)
ИМС TDA7449 – регулятор громкости и регулятор тембра, разработан для использования в HI-FI аппаратуре и качественных автомобильных аудиосистемах, обладает низким уровнем шумов и искажений. На странице http://rcl-radio.ru/?p=56015 был показан пример использования ИМС TDA7449 с выводом информации на индикатор LCD1602 на базе контроллера HD44780. На этой странице будет показан пример использования TDA7449 с выводом информации на LCD дисплей 84×48 Nokia 5110. Регулятор тембра и громкости.

TDA7313 + DS3231 + IR + LCD2004 (Arduino)
Ранее в http://rcl-radio.ru/?p=58563 описывался пример использования аудиопроцессора TDA7313 под управлением Arduino Nano с дисплеем LCD1602, на этой странице будет рассмотрен аналогичный пример но с использованием дисплея LCD2004 c I2C модулем на базе микросхем PCF8574, что позволяет подключать символьный дисплей LCD2004 к плате Arduino всего по двум проводам SDA и SCL (А4 и А5). Микросхема TDA7313 имеет три стерео входа, регуляторы тембра НЧ и ВЧ, тонкомпенсация и четыре выхода.

R2A15908SP — стерео аудиопроцессор (Arduino)
R2A15908SP — простой но высококачественный аудиопроцессор с микроконтроллерным управлением (I2C). Основные характеристики аудиопроцессора R2A15908SP: Регулировка громкости от -87 до 0 дБ (шаг 1 дБ) 5-и канальный коммутатор входов Режим MUTE Независимый для каждого входа предусилитель с диапазоном регулировки от 0 до 20 дБ (шаг 2 дБ) Регуляторы тембра ВЧ и НЧ с диапазоном регулировки от -14 до +14 дБ (шаг 2 дБ) Режимы: Surround Low / High Напряжение питания от 4,75 до.

Темброблок на TDA8425 (Arduino)
ИМС TDA8425 представляет собой двухканальный (стереофонический) регулятор громкости и тембра с микропроцессорным управлением. Технические характеристики: Производитель: Philips Напряжение питания минимальное 7 В Напряжение питания максимальное 13,2 В Частотный диапазон 35. 20000 Гц Коэффициент гармоник 0,05% Выходное напряжение максимальное 1 В Регулировка громкости 48 уровней от -88 дБ до +6 дБ с шагом 2 дБ Регулировка тембра НЧ от -12 дБ до +15 дБ с шагом 3 дБ .

Источник

Регуляторы громкости и тембра

Микросхема PT2256V фирмы Princeton Technology Согр. предназначена для применения в аудиотехнике. Практически микросхема представляет собой аналог сдвоенного переменного резистора, управляемого с помощью двух кнопок (UP и DOWN). Регулировка осуществляется 32-мя ступенями. Полное сопротивление каждого «переменного резистора» составляет 51 кОм. Имеется отвод .

Микросхема TDA7302, TDA7306 представляет собою аудиопроцессор с цифровым управлением. Диапазон напряжений питания = 6. 14 В; Управление через последовательную шину данных (TDA7302) или последовательный интерфейс (TDA7306); Выбор между тремя стерео- и одним моно- входами; Управление.

Микросхема TC9421F представляет собою двухканальный регулятор громкости, баланса и тембра с управлением по трехпроводной шине. Напряжение питания = 6. 12 В; Коэффициент нелинейных искажений = 0,005%; Диапазон регулировки коэффициента передачи . .0. -78дБ; Шаг регулировки в диапазоне.

Микросхема TC9412AP, TC9412AF, TC9413AP представляет собою двухканальный аттенюатор с цифровым управлением. Напряжение питания: при однополярном питании (VGND = -Vсс = 0 В) = 6..18В, при двухполярном питании (VGND = 0 В) ±6. ±17 В; Коэффициент нелинейных искажений = 0,005%; .

Микросхема TC9260P, TC9260F представляет собою двухканальный аттенюатор с цифровым управлением. Напряжение питания = 4,5. 12 В; Коэффициент нелинейных искажений = 0,01%; Диапазон регулировки коэффициента передачи = 100 дБ; 40 ступеней громкости; Коэффициент взаимного влияния каналов.

Микросхема TC9235P, TC9235F представляет собою двухканальный аттенюатор с цифровым управлением. Напряжение питания = 4,5. 12В; Коэффициент нелинейных искажений = 0,01 %; Диапазон регулировки коэффициента передачи = 100 дБ; Встроенный ЦАП для управления индикатором уровня; .

Микросхема TC9210P, TC9211P представляет собою двухканальный аттенюатор с цифровым управлением. Напряжение питания: при однополярном питании (Vgnd = 0 В) Vсс = 6. 17В, при двухполярном питании (Vgnd = 0 В) Vcc = ±6. ±17 В; Коэффициент нелинейных искажений = 0,005%; Диапазон.

Вам понравится:  Регулятор громкости на резисторах своими

Микросхема SSM2160, SSM2160P, SSM2160S, SSM2161, SSM2161P, SSM2161S представляет собою четырех/шестиканальный регулятор громкости и баланса с цифровым управлением. Напряжение питание = +10. +20 (+5. ±10) В ; SSM2161 = четыре канала ; SSM2160 = шесть каналов ; 7-рвзрядная.

Микросхема M62429P представляет собою двухканальный регулятор громкости с цифровым управлением. Номинальное напряжение питания = +5 В; Диапазон регулировки громкости = 0. -83 дБ; Шаг регулировки громкости = 1 дБ; Коэффициент нелинейных искажений = 0,01 %; Диапазон рабочих температур.

Микросхема LM1992N представляет собою двухканальный регулятор громкости и тембра с цифровым управлением. Напряжение питания = 6. 12В; Коэффициент нелинейных искажений = 0,15%; Диапазон регулировки коэффициента передачи = 80 дБ; Диапазон регулировки фадера = 40 дБ; Диапазон.

Источник

Подборка плат для регулировки громкости при сборке своего усилителя мощности

С развитием стереотехники резко обострилась одна из проблем аналоговой аппаратуры — низкое качество и небольшой ресурс работы переменных резисторов, служащих регуляторами громкости. И если для моноаппаратуры еще можно подобрать переменный резистор на замену вышедшему из строя, то для стерео, особенно импортной, это практически нереально.

Найти “примерно такой же” резистор очень сложно даже в крупных городах. Причем чаще всего “ломаются” резисторы регуляторов громкости. Регуляторы тембра и баланса используются реже и служат гораздо дольше. К счастью, полный выход из строя сдвоенного (“стерео”) переменного резистора случается крайне редко. Обычно хотя бы один из резисторов полностью или частично исправен. И, “зацепившись” за эту часть регулятора. можно “вылечить” все устройство!

При этом даже не придется переводить систему в монофонический режим—достаточно просто добавить специальную микросхему электронного регулятора громкости. Такие микросхемы сравнительно дешевы, почти не искажают звук и практически не требуют подключения внешних элементов. С их помощью автор в свое время вернул жизнь не одному десятку различных магнитол, и ни один владелец не остался разочарованным.

Знать, как именно устроены подобные микросхемы — совершенно не обязательно (фактически, это операционный усилитель с электрически изменяемым коэффициентом усиления), нужно только помнить, что при уменьшении напряжения на регулирующем входе громкость обычно также уменьшается. И даже если переменный резистор “восстановлению не подлежит” — тоже не все потеряно. В таком случае можно использовать цифровой регулятор громкости, который управляется кнопками.

Такие регуляторы бывают двух типов: автономные и требующие использования дополнительного процессора. Первые (например, КА2250, ТС9153) регулируют только громкость. “Качество регулировки” — довольно скверное, но их стоимость сравнительно невелика. “Процессорные” регуляторы раза в два дороже автономных, но гораздо “круче”: и регулировка более линейная, и, помимо регулировки громкости, можно регулировать тембр, баланс, звуковые эффекты (псевдостерео — стерео из моносигнала, как у TDA8425 или псевдоквадра-стерео в микросхемах серии ТЕАбЗхх).

Есть также селектор каналов на входе и некоторые другие “примочки”. Но распространение таких регуляторов, даже несмотря на весьма выгодное соотношение цена- качество, ограничивает необходимость использования внешнего, заранее запрограммированного процессора. Специализированные запрограммированные процессоры для работы с подобными микросхемами автор в продаже не встречал.

Большинство микросхем с электронной регулировкой громкости предназначены для работы в кассетном магнитофоне. Они имеют пару чувствительных и малошумящих предварительных усилителей, пару усилителей мощности с электронной регулировкой громкости, и рассчитаны на низковольтное питание (1,8…6,0 В при потребляемом токе около 10 мА).

Схема регулятора громкости на микросхеме TA8119P

Таковы микросхемы ТА8119Р ф.TOSHIBA (рис.1) и ВАЗ520 ф.POHM(рис.2). Как видно из рисунков, отличаются они только количеством выводов, а электрические характеристики у них практически совпадают. Кстати, ИМС ТА8119 выпускается только в DIP-корпусе для монтажа в отверстия. а ВА3520 — в DIP- и SOIC-корпусах (соответственно, ВА3520 и BA3520F, последняя—для поверхностного монтажа). Расстояние между рядами выводов у ТА8119 и SOIC-версии BA3520F — 7,5 мм. у ВА3520 в DIP-корпусе —10 мм.

Изготовление конструкции

Схема паяется на печатной плате из фольгированного стеклотекстолита. Плата не содержит перемычек, а два кажущихся разрыва в цепи массы будут местами пайки корпуса кнопок. Монтаж следует начать с припаивания интегральных микросхем, потому что это делается гораздо удобнее, когда нет выступающих элементов от другой стороны. Порядок пайки остальных элементов произвольный. Схему необходимо питать напряжением 5 В, желательно стабилизированным.

Полезное: Схема простой паяльной станции


Готовые для пайки платы

Определенным неудобством является программирование микроконтроллера, так как здесь не предусмотрено разъема программирования. Чтобы запрограммировать МК U1 — подпаяйте аккуратно к его выводам тонкие провода, которые затем будут подключены к программатору. Вывод VB (VBias) соединен с массой схемы, однако, если необходимо подключение этого входа к другой полярности, просто вырежьте фрагмент дорожки между выводами на плате. Когда потенциометр работает для регулировки громкости предусилителя и амплитуда сигнала, что на него подается не превышает 0,5 вольта, то выход VB следует поляризировать относительно отрицательного напряжения -5 В относительно массы. Это обеспечит правильную передачу аналогового сигнала.


кнопочный регулятор — потенциометр

Следует иметь в виду, что потенциометр имеет максимально допустимое напряжение, которое может присутствовать на любом из контактов (относительно GND) от -0.1 до +7 В для Vb = 0 и от -5 до +7 В для Vb = -5 В. При эксплуатации регулятора следует позаботиться о том, чтобы не превышать указанные допустимые границы напряжений. Когда вы питаете схему от отдельного БП, необходимо убедиться, что масса потенциометра (GND) и масса схемы назначения связаны между собой.

Вам понравится:  Резистор печки ваз 2109 характеристики


Фьюзы биты

На рисунке показаны настройки фузов для микроконтроллера ATTiny13

Цифровой регулятор громкости на BA3520

Операционные усилители (ОУ) внутри — обычные, с той лишь разницей, что некоторые резисторы обратной связи уже установлены в микросхеме. Выходной ток предварительных усилителей — несколько миллиампер, выходных — около сотни миллиампер. На рисунках указаны рекомендуемые схемы включения, но, в принципе, ОУ можно включать по любой стандартной схеме, за исключением, разве что, дифференциальной.

Если слишком большое усиление не требуется, предваритепьные уси- лители можно не использовать, подав входной сигнал непосредственно на выходные усилители (их коэффициент усиления при максимальной громкости — около 7). При этом входы предварительных усилителей желательно соединить с выходом REF микросхемы. Если использовать эти микросхемы для замены переменного резистора, сигнал на входы лучше подавать через резисторы сопротивлением около 100 кОм (для компенсации усиления выходных усилителей), как показано на рис.За.

И вообще, во всех схемах с использованием ВА3520 сигнал на входы оконечных усилителей лучше подавать через резисторы сопротивлением не менее 10 кОм. Это значительно уменьшает шумы на выходе (микросхема “не любит” слишком низкоомные источники сигнала), но выход предварительного усилителя микросхемы можно соединять со входом оконечного непосредственно. К ТА8119 это тоже относится, хотя выражено гораздо слабее.

Для более плавной регулировки громкости в микросхеме ТА8119Р и ВА3520, а также для устранения “шороха” при вращении движка переменного резистора, между движком и общим проводом рекомендуется включить конденсатор емкостью 1…10 мкФ (“+” к движку). При “частичной неисправности” переменного резистора (перегорела или истерлась дорожка возле одного из крайних выводов) можно “выкрутиться”, несколько усложнив схему.

Переменный регулятор громкости на резисторе, транзисторе, микросхеме

Если перегорел контакт, к которому подводится движок резистора для установки минимальной громкости, используется схема на рис.36 или рис.Зв. Здесь резисторы R1 и R2 образуют делитель напряжения. Но следует отметить, что напряжение в средней точке такого делителя никогда не уменьшится до нуля: при указанных номиналах резисторов оно превышает 0,3 В. т.е. “нулевая” громкость недостижима.

Для устранения этого недостатка в схему добавлен повторитель на транзисторе VT1. При таком напряжении он все еще закрыт (порог открывания — около 0.6 В). В схеме на рис.3б достичь максимальной громкости также невозможно из-за упомянутого выше падения напряжения на транзисторе (около 0,6 В). Поэтому лучше использовать схему, изображенную на рис.3в.

Источник питания (+5 В) должен быть стабилизированным — иначе громкость будет “плавать”. При настройке этой схемы, возможно, понадобится подобрать сопротивления R3 и R4 для получения максимальной громкости. Если же перегорел “верхний” вывод переменного резистора, схема для его “лечения” становится еще проще (рис.Зг). Источник питания тоже должен быть стабилизированным.

Но если переменный резистор “восстановлению не подлежит”, единственный выход — использование цифровых регуляторов. В принципе, такие регуляторы можно построить и на обычной цифровой логике, пропуская звуковой сигнал через микросхему цифро-аналогового преобразователя (ЦАП). Подобные схемы неоднократно публиковались в отечественной литературе начала 90-х годов, но дешевле и удобней воспользоваться специализированной микросхемой, например, КА2250 (Samsung) или ТС9153 (Toshiba).

Схема электрическая кнопочного регулятора


Схема принципиальная кнопочного регулятора потенциометра
Основой схемы является микроконтроллер U1 (ATTiny13), работающий на внутреннем источнике синхронизации (внутреннем генераторе). По трех-проводной шине он управляет состоянием U2 (DS1267). Выходами потенциометров будут разъемы P1 и P2. Диод D1 вместе с резистором, ограничивающим его ток, выполняет функцию индикатора работы шины. Короткой вспышкой сообщает о факте отправки данных в м/с U2. Конденсатор C1 (100nF) представляет собой фильтр питания.

Схема подключения PT2257

Схема очень проста. Дополнительные элементы, необходимые для работы микросхемы, включают конденсаторы и, конечно же, управляющий микроконтроллер (Ардуино).

Пример практического использования контроллера PT2257, подключенного к конкретной системе, можно найти в статье, посвященной модулю FM-радио TEA5767.

Схемы индикации.

Блок индикации на основе микросхемы К155РЕ3:


увеличение по клику

Непосредственно счётный узел построен на счётчиках IC1 и IC2. Переключателями S1-S5 задаётся первоначальный уровень громкости (в двоичном коде. ), который устанавливается при включении устройства. Цепь R6, C1 обеспечивает загрузку выставленного значения.

На микросхемах IC6, IC7 формируются сигналы остановки счёта при достижении крайних значений : 0 и 32 (64дБ).

Инверторы IC8 включены для устранения щелчков при регулировании громкости. Буферные транзисторы VT1-VT5 взяты с большим запасом практически под любое реле. Тип и напряжение питания реле не указываю — на Ваш выбор.

Микросхема IC3 используется как преобразователь двоичного кода в двоично-десятичный. Преобразование происходит «один в один», то есть индикация осуществляется от 0 до 32 (напоминаю, что шаг регулировки 2 дБ и соответственно глубина регулировки будет 64 дБ.) При желании сделать индикацию в децибелах, достаточно изменить прошивку IC3. (Опять напоминаю, что микросхемы К155РЕ3 однократно программируемые. Таким образом для смены прошивки придётся использовать новую микросхему). «Прошивка» очевидна, поэтому не приводится.

IC4, IC5 управляют семисегментными индикаторами с общим анодом. При использовании индикаторов с общим катодом IC4 и IC5 необходимо заменить на К514ИД1, а резисторы R7-R19 исключить.

Блок индикации на основе микросхемы К155ПР7:


увеличение по клику

Здесь всё, как в предыдущей схеме, только вместо микросхемы памяти используется специализированная микросхема для преобразования двоичного кода в двоично-десятичный. Преобразование происходит «один в один», то есть индикация осуществляется от 0 до 32 (напоминаю, что шаг регулировки 2 дБ и соответственно глубина регулировки будет 64 дБ.)

Вам понравится:  Упрощенная схема генератора на транзисторе

Блок индикации без микросхем памяти. Учитывая, что вышеуказанные микросхемы на сегодняшний день являются довольно труднодоставаемыми, была разработана схема индикации на обычных счётчиках:


увеличение по клику

Подробнее о схеме: непосредственно счётный узел построен на счётчиках IC1 и IC2. Для формирования двоично-десятичного кода используются IC3, IC4. Переключателями S1-S5 (в двоичном коде. ) и S6-S10 (в двоично-десятичном коде. ) задаётся первоначальный уровень громкости, который устанавливается при включении устройства. Цепь R6, C1 обеспечивает загрузку выставленных значений.

На микросхемах IC7, IC9 формируются сигналы остановки счёта при достижении крайних значений : 0 и 32 (64дБ).

Инверторы IC8 включены для устранения щелчков при регулировании громкости. Буферные транзисторы VT1-VT5 взяты с большим запасом практически под любое реле. Тип и напряжение питания реле не указываю — на Ваш выбор.

IC5, IC6 управляют семисегментными индикаторами с общим анодом. При использовании индикаторов с общим катодом IC5 и IC6 необходимо заменить на К514ИД1, а резисторы R7-R19 исключить.

Недостатки схемы: 1. необходимость двойного задания начального уровня громкость — S1-S5 в двоичном коде и S6-S10 тоже самое, но в двоично-десятичном коде.(если использовать общие группы переключателей, что часто встречается в Интернете, будет несоответствие между показаниями индикатора и реальным уровнем громкости).

2. из-за помех по цепям питания возможно несоответствие между показаниями индикатора и реальным уровнем громкости. Для избежания этого необходимо обязательно на каждый счетчик установить по цепям питания шунтирующие конденсаторы, а на выключателе питания использовать искрогасящие цепи. При такой организации схема эксплуатируется уже в течении 2 лет и показала надёжную работу!

Добавить ссылку на обсуждение статьи на форуме

РадиоКот >Схемы >Аудио >Разное >

Теги статьи: Регулятор громкостиДобавить тег

Цифровой регулятор громкости и баланса на MAX5440 с ДУ.

Автор: Анастасия Попкова Опубликовано 23.12.2008

Цель данной статьи заключается в обмене опытом по созданию простого, современного и эффективного регулятора громкости и баланса. Регулятор собран на MAX5440 , который в отечественном Интернете называется как «контроллер углового кодера управления громкостью в режиме стерео» (Интересно, в чью умную голову пришел такой занятный перевод? Прочитал пять раз. Так ничего и не понял. Советую английский даташит. Прим. Кота.

)(русскоязычное описание характеристик легко можно найти в Интернете). Данный контроллер не требует для своей работы каких-то специфических знаний по программированию, т.к. работает по принципу «включил и работаешь». Интересным является использование энкодера для регулирования уровня (больше/меньше) и кнопок для выбора режимов (громкость/баланс/приглушение). Есть 6 штук довольно информативных светодиодов, показывающих уровень громкости и баланс. Схема:

Простота схемы обусловила, соответственно, и простую топологию печатной платы (все чертежи в конце статьи). Т.к. задачей ставилось изучение возможностей контроллера, а не построение законченного устройства, то и не было смысла усложнять плату (например, стабилизатором питания или элементами индикации).

Регулятор порадовал своей работой, равномерным изменением громкости и баланса при вращении энкодера, правильным зажиганием светодиодов в зависимости от установленного уровня. Корректно отрабатывались нажатия кнопок «Mute» и «Mode». Сложно придраться к хорошей работе. Изменения звука без щелчков. Мне захотелось сделать данный регулятор с дистанционным управлением. Функций у этого регулятора немного (но достаточно), поэтому и дистанционка должна быть минимально-достаточной. В общем был приобретен дешевый микроконтроллер PIC12F629, ИК приемник типа TSOP1736 и симпатичный пультик-брелок (30 руб). Схема приемника ДУ:

Ну и в двух словах о пультике. Я купила самый красивый по цвету. Цена как и на любой китайский ширпотреб была слишком мала. На его корпусе написано «For GoldStar».

Кнопками «VOL» меняем уровень того или иного режима. Кнопками «СH» выбираем соответствующий режим (громкость или баланс). Кнопка MUTE говорит сама за себя. Для пульта используется компьютерная батарейка-таблетка типа CR2032. Пульт работает по протоколу NEC. Это один из самых распространенных протоколов. Встречается в аппаратуре таких фирм, как Funai, Akai, Fisher, Goldstar, Hitachi, Kenwood, Onkio, Teac, Yamaha, Sanyo, Canon, Orion, Apex, Eltax, и многих других. Этот протокол настолько распространен в аппаратуре из страны Восходящего Солнца, что его часто называют «японский протокол».

Резюме. Простота схемы и простота регулировки позволяет собрать довольно надежное и совершенное устройство. Несложная схема на микроконтроллере позволяет заменить стационарное управление (энкодером и кнопками) на дистанционное. Энкодер и ДУ не могут работать одновременно. Для работы ДУ светодиод на линии «modeind» необходимо демонтировать.

Печатные платы в форматах SL 4.0 и gif. Прошивка МК.

Вопросы, как обычно, складываем тут.

Как вам эта статья? Заработало ли это устройство у вас?
24 1
3
1

Эти статьи вам тоже могут пригодиться:

Регулятор громкости с селектором на два входа.

Брутальный регулятор громкости для ПК

Управление регулятором

Работа со схемой проста. Изменение громкости осуществляется нажатием кнопок S1 и S2. Удержание нажатой кнопки вызывает плавное перемещение воображаемого ползунка потенциометра в нужном направлении. Светодиод D1 сигнализирует своим миганием факт изменения положения ползунка. Когда он достигнет одной из крайних позиций — индикатор перестанет мигать, хотя вы и продолжите держать нажатой кнопку.


Подключение регулятора

Источник

Поделиться с друзьями
Радиолюбительские схемы
Adblock
detector