Пространство между пластинами плоского конденсатора заполнено фарфором

Решение

На пластинах конденсатора распределены свободные электрические заряды с плотностью  = . На диэлектрике возникают связанные электрические заряды с плотностью р ( диэлектрик поляризуется в электрическом поле пластин ).

Поверхностная плотность связанных зарядов р = Рe , где

Ре – вектор поляризации диэлектрика; = -1, , где

— поляризуемость диэлектрика.

= ( ),

где — относительная диэлектрическая проницаемость данного диэлектрика,

— напряжённость электрического поля.

р = ( -1) ,

 = D = E = ,

После подстановки данных получим:

р = 8,8510 -12 (2-1) (4000/5) 10 -3 = 7,110 -6

 = 8,8510 -12  (4000/5) 10 -3 = 1,410 -5

Ответ:р = 7,110 -6 ; = 1,410 -5 .

Задача 4. Плоский конденсатор с расстоянием между пластинами d =1 см заряжен до разности потенциалов U = 10 3 В. Определить объёмную плотность энергии поля конденсатора. Диэлектрик – стекло.

Дано:

d = 1 см = 10 -2 м

— ?

Решение

Объёмная плотность энергии поля конденсатора есть энергия, заключённая в единице объёма поля :

,

где — энергия поля конденсатора;V –объём поля, т.е. объём пространства между пластинами.

Энергия поля конденсатора

,

где С – ёмкость конденсатора

; ;.

После подстановки получаем:

.

Ответ: .

Задачи для самостоятельного решения

Задача 1. Определить ёмкость плоского конденсатора с двумя слоями диэлектриков: фарфора толщиной d1 = 2 мм и эбонита толщиной d2 = 1,5 мм, если площадь пластины S = 100 см 2 . = 5,= 3.

Ответ: .

Задача 2*. Конденсатор ёмкостью Ф был заряжен до разности потенциалов 40 В. После отключения от источника тока конденсатор был соединён параллельно с другим, незаряженным конденсатором ёмкостьюФ. Какое количество энергии первого конденсатора израсходуется на образование искры в момент присоединения второго конденсатора?

Ответ: Дж.

Задача 3*. Плоский воздушный конденсатор с площадью пластин S = 500 см 2 подключен к батарее, Э.Д.С. которой = 300 В. Определить работу внешних сил по раздвиганию пластин от d1 = 1 см до d2 = 3 см в двух случаях: а) перед раздвиганием пластины отключаются от батареи; б) пластины в процессе раздвигания остаются подключенными к батарее.

Ответ: а) Дж б) Дж.

Задача 4. Найти электроёмкость уединённого металлического шара радиу-сом R­ = 1 см.

Задача 5. Определить электроёмкость металлической сферы, погружённой в воду, радиусом R = 2 см.

Ответ: С = 1,8Ф.

Задача 6. Половина металлического шара радиусом R = 6 см погружена в парафин. Вычислить электроёмкость шара.

Задача 7*. Два металлических шара радиусами R1 = 2 см и R2 = 6 см соединены проводником, ёмкостью которого можно пренебречь. Шарам сообщён заряд q = 10 -3 мкКл. Какова поверхностная плотность заряда на шарах?

Ответ:1 = 4,98; 2 = 1,66.

Задача 8*. Шар радиусом R1 = 6 см заряжен до потенциала = 300 В, а шар радиусомR2 = 4 см до потенциала = 500 В. Определить потенциал шаров после того, как их соединили металлическим проводником. Ёмкостью соединительного проводника можно пренебречь.

Вам понравится:  Схема подключения двухклавишного выключателя с подсветкой werkel

Ответ: =В.

Задача 9. Определить ёмкость плоского конденсатора, площадь пластин которого S = 100 см 2 , а расстояние между ними d = 0,1 мм. Диэлектрик – слюда.

Ответ: С = Ф.

Задача 10. Между пластинами плоского конденсатора, заряженного до разности потенциалов U = 600 В, находятся два слоя диэлектриков: стекла толщиной d1 = 7 мм и эбонита толщиной d2 = 3 мм. Площадь каждой пластины конденсатора S = 200 см 2 . Найти: а) электроёмкость конденсатора; б) индукцию поля, напряжённость поля и падение потенциала в каждом слое.= 7,= 3.

Ответ: а) Ф; б);;В;В.

Задача 11. Площадь пластин плоского конденсатора S = 20 см 2 . Пространство между пластинами заполнено двумя слоями диэлектриков: слюды толщиной d1 = 0,7 мм и эбонита толщиной d2 = 0,3 мм. Какова электроёмкость конденсатора? = 7,= 3.

Ответ: С = 88,5 пФ.

Задача 12. На пластинах плоского конденсатора равномерно распределён заряд с поверхностной плотностью . Расстояние между пластинами d1 = 1мм. На сколько изменится разность потенциалов на его обкладках при увеличении расстояния между ними до d2 = 3 мм. = 2.

Ответ: U = 45,2 В.

Задача 13*. В плоский конденсатор вдвинули плитку парафина толщиной d = 1 см, которая вплотную прилегает к его пластинам. На сколько можно увеличить расстояние между пластинами, чтобы получить прежнюю ёмкость?

Задача 14. Ёмкость плоского конденсатора С = 1,5 мкФ. Расстояние между пластинами d = 5 мм. Какова будет ёмкость конденсатора, если на нижнюю пластину положить лист эбонита толщиной d1 = 3мм? = 3.

Задача 15. Между пластинами плоского конденсатора находится плотно прилегающая стеклянная пластина. Конденсатор заряжен до разности потенциалов U = 100 В. Какова будет разность потенциалов, если вытащить стеклянную пластину из конденсатора? = 7,= 1.

Задача 16. Две концентрические металлические сферы радиусом R1 = 2 см и R2 = 2,1 см образуют сферический конденсатор. Определить его электроёмкость, если пространство между сферами заполнено парафином ( = 2).

Ответ: С = Ф.

Задача 17. Конденсатор состоит из двух концентрических сфер. Радиус внутренней сферы R1 = 10 см, внешней R2 = 10,2 см. Промежуток между сферами заполнен парафином. Внутренней сфере сообщён заряд q = 9 мкКл. Определить разность потенциалов между сферами.

Задача 18. К воздушному конденсатору, заряжённому до разности потенциалов U = 600 В и отключённому от источника напряжения, присоединили параллельно другой незаряженный конденсатор таких же размеров и формы, но с диэлектриком (фарфор). Определить диэлектрическую проницаемость фарфора, если после присоединения второго конденсатора разность потенциалов уменьшилась до U1 = 100 В.

Задача 19. Два конденсатора ёмкостью C1 = 3 мкФ и С2 = 6 мкФ соединены между собой и присоединены к батарее с Э.Д.С. = 120 В. Определить заряд каждого конденсатора и разность потенциалов между его обкладками, если конденсаторы включены: а) параллельно; б) последовательно.

Вам понравится:  Таймер розетка на холодильник

Ответ: а) = 3,610 -4 Кл; = 7,210 -4 Кл; U1 = 120 В; U2 = 120 В;

б) = 2,410 -4 Кл; = 2,410 -4 Кл; U1 = 80 В; U2 = 40 В.

Задача 20. Конденсатор ёмкостью C1 = 0,2 мкФ был заряжен до напряжения U1 = 320 В. После того, как его соединили параллельно со вторым конденсатором, заряженным до напряжения U2 = 450 В, напряжение на нём изменилось до U = 400 В. Определить ёмкость С2 второго конденсатора.

Задача 21. Конденсатор ёмкостью С1 = 0,6 мкФ был заряжен до напряжения U1 = 300 В и соединён со вторым конденсатором ёмкостью С2 = 0,4 мкФ, заряженным до напряжения U2 = 150 В. Найти величину заряда, перетёкшего с пластин первого конденсатора на второй.

Задача 22. Три одинаковых плоских конденсатора соединены последовательно. Ёмкость такой батареи С = 910 -11 Ф. Площадь каждой пластины S = 100 см 2 , диэлектрик – стекло. Какова толщина диэлектрика?

Задача 23*. Металлический шар радиусом R = 3 см несёт заряд q = 210 -2 мкКл. Шар окружен слоем парафина толщиной d = 2 см. Определить энергию электрического поля, заключённого в слое диэлектрика.

Задача 24. Плоский конденсатор с расстоянием между пластинами d = 1 см заряжен до разности потенциалов U = 10 3 В. Определить объёмную плотность энергии конденсатора.

Ответ: = 0,044 .

Задача 25. Расстояние между пластинами плоского конденсатора d = 2 см, разность потенциалов U = 6000 В. Заряд каждой пластины q = 10 -8 Кл. вычислить энергию поля конденсатора и силу взаимного притяжения пластин.

Ответ: = 30 мкДж; F = 1,5 мН.

Задача 26. Какое количество теплоты выделится при разряде плоского конденсатора, если разность потенциалов между пластинами U = 15000 В, расстояние d = 1 мм, площадь пластины S = 300 см 2 , диэлектрик – слюда

Ответ: Q = = 0,209 Дж.

Задача 27. Плоский воздушный конденсатор ёмкостью С = 1,110 -9 Ф заряжен до разности потенциалов U = 300 В. После отключения от источника напряжения расстояние между пластинами было увеличено в 5 раз. Определить: а) разность потенциалов на обкладках конденсатора после их раздвигания; б) работу внешних сил по раздвиганию пластин.

Ответ: U = 1500 В, А = 0,19810 -3 Дж.

Задача 28*. Конденсатор ёмкостью С1 = 6,710 -9 Ф зарядили до разности потенциалов U = 1500 В и отключили от источника напряжения. Затем к конденсатору присоединили параллельно второй незаряженный конденсатор ёмкостью С2 = 4,410 -9 Ф. Какое количество энергии, запасённой в первом конденсаторе, было израсходовано на образование искры, проскочившей в момент соединения конденсаторов?

Ответ: = 12,510 -3 Дж.

Задача 29. Найти энергию уединённой сферы радиусом R = 4 см, заряженной до потенциала = 500 В.

Задача 30. Вычислить энергию электростатического поля шара, которому сообщён заряд q = 10 -7 Кл, если диаметр шара d = 20 см.

Вам понравится:  Схема подключения 1uz fe vvti

Задача 31. Пластину из эбонита поместили в однородное электрическое поле напряжённостью E = 10 3 . Толщина пластиныd = 2 мм, площадь S = 300 см 2 . Найти: а) плотность связанных зарядов на поверхности пластины; б) энергию электрического поля, сосредоточенную в пластине. Силовые линии электрического поля перпендикулярны её плоской поверхности. = 3

Ответ: We = 8,8510 -11 Дж.

Задача 32. Ёмкость плоского конденсатора С = 1,110 -9 Ф. Диэлектрик – фарфор. Конденсатор зарядили до разности потенциалов U = 600 В и отключили от источника напряжения. Какую работу нужно совершить, чтобы вынуть диэлектрик из конденсатора? Трением пренебречь.

Задача33*. Пространство между пластинами плоского конденсатора заполнено диэлектриком (фарфор), объём которого V = 100 см 3 . Поверхностная плотность заряда на пластинах конденсатора . Вычислить работу, которую нужно совершить, чтобы удалить диэлектрик из конденсатора.

Задача 34*. Эбонитовый шар заряжен равномерно по объёму. Во сколько раз энергия электрического поля шара меньше энергии электрического поля вне шара?

Ответ: , — диэлектрическая проницаемость среды, в которой находится шар.

Задача 35. Между пластинами плоского конденсатора, расположенными горизонтально, удерживается в равновесии пылинка массой m = 10 -9 г и зарядом Кл. Расстояние между пластинами равно 1 см. Определить разность потенциалов между пластинами.

Задача 36. Между пластинами плоского конденсатора помещено два слоя диэлектрика, слюда (= 7,d1 = 1мм) и парафин (= 2,d2 = 0,5 мм ). Определите 1) напряженность электростатических полей в слоях диэлектрика; 2) электрическое смещение, если разность потенциалов между пластинами конденсатора U=500 В.

Ответ: Е1 = 182 , Е2 = 637 ,D = 11,3 .

Задача 37. Пространство между пластинами конденсатора заполнено стеклом (= 7). Расстояние между пластинами 5мм, разность потенциалов 1кВ. Определите: 1) напряженность поля в стекле; 2) поверхностную плотность заряда на пластинах конденсатора; 3) поверхностную плотность связанных зарядов на стекле.

Ответ: 1) Е = 200 , 2) = 12,4; 3)1= 10,6 .

Задача 38. К пластинам плоского воздушного конденсатора приложена разность потенциалов U1 = 500 В. Площадь пластин S = 200см 2 , расстояние между ними 1,5 мм. После отключения конденсатора от источника напряжения в пространство между пластинами внесли парафин (= 2). Определите разность потенциаловU2 между пластинами после внесения диэлектрика, а также емкости конденсатора С1 и С2 до и после внесения диэлектрика.

Задача 39. Определите емкость коаксиального кабеля длиной 10м, если радиус его центральной жилы 1см, радиус оболочки 1,5 см, а изоляция резина (= 2,5).

Задача 40. Разность потенциалов между точками А и Б U = 9 В. Емкость конденсаторов соответственно С1 = 3 мкФ, С2 = 6 мкФ. Определите: 1) заряды q1 и q2; 2) разность потенциалов U1 и U2 на обкладках каждого конденсатора. Конденсаторы включены последовательно.

Источник

Поделиться с друзьями
Радиолюбительские схемы
Adblock
detector