Лекции по динамике теоретическая механика

Теоретическая механика

Часть 2 динамика

советом университета в качестве

Теоретическая механика. Часть 2. Динамика: Учебное пособие / Л.И.Драйко; Кубан. гос. технол.ун-т. Краснодар, 2011. 123 с.

Излагается в краткой форме теоретический материал, даны примеры решения задач, большинство из которых отражает реальные вопросы техники, уделено внимание выбору рацио­нального способа решения.

Предназначено для бакалавров заочной и дистанционной форм обучения стро­ительных, транспортных и машиностроительных направлений.

Табл. 1 Илл. 68 Библиогр. 20 назв.

Научный редактор канд.техн.наук,доц. В.Ф.Мельников

Рецензенты: зав.кафедрой теоретической механики и теории механизмов и машин Кубанского аграрного университета проф. Ф.М. Канарев; доцент кафедры теоретической механики Ку­банского государственного технологического университета М.Е. Мултых

Печатается по решению Редакционно-издательского совета Кубанского государственного технологического университета.

ISBN 5-230-06865-5 КубГТУ 1998г.

Предисловие

Данное учебное пособие предназначено для студентов заочной формы обучения строительных, транспортных и машиностроительных специальностей, но может быть использовано при изучении раздела «Динамика» курса теоретической механики студентами заочниками других специальностей, а также студентами дневной формы обучения при самостоятельной работе.

Пособие составлено в соответствии с действующей программой курса теоретической механики, охватывает все вопросы основной части курса. Каждый раздел содержит краткий теоретический материал, снабженный иллюстрациями и методическими рекомендациями для его использования при решении задач. В пособии разобрано решение 30 задач, отражающих реальные вопросы техники и соответствующих контрольным заданиям для самостоятельного решения. Для каждой задачи представлена расчетная схема, наглядно иллюстрирующая решение. Оформление решения соответствует требованиям, предъявляемым к оформлению контрольных работ студентов-заочников.

Автор выражает глубокую признательность преподавателям кафедры теоретической механики и теории механизмов и машин Кубанского аграрного университета за большой труд по рецензированию учебного пособия, а также преподавателям кафедры теоретической механики Кубанского государственного технологического университета за ценные замечания и советы по подготовке учебного пособия к изданию.

Все критические замечания и пожелания будут приняты автором с благодарностью и в дальнейшем.

Введение

Динамика является наиболее важным разделом теоретической механики. Большинство конкретных задач, которые приходится в инженерной практике, относится к динамике. Используя выводы статики и кинематики, динамика устанавливает общие законы движения материальных тел под действием приложенных сил.

Простейшим материальным объектом является материальная точка. За материальную точку можно принять материальное тело любой формы, размерами которого в рассматриваемой задаче можно пренебречь. За материальную точку можно принимать тело конечных размеров, если различие в движении его точек для данной задачи не существенно. Это бывает в случае, когда размеры тела малы по сравнению с расстояниями, которые проходят точки тела. Каждую частицу твердого тела можно считать материальной точкой.

Силы, приложенные к точке или материальному телу, в динамике оцениваются по их динамическому воздействию, т. е. по тому, как они изменяют характеристики движения материальных объектов.

Движение материальных объектов с течением времени совершается в пространстве относительно определенной системы отсчета. В классической механике, опирающейся на аксиомы Ньютона, пространство считается трехмерным, его свойства не зависят от движущихся в нем материальных объектов. Положение точки в таком пространстве определяется тремя координатами. Время не связано с пространством и движением материальных объектов. Оно считается одинаковым для всех систем отсчета.

Законы динамики описывают движение материальных объектов по отношению к абсолютным осям координат, условно принятым за неподвижные. Начало абсолютной системы координат принимается в центре Солнца, а оси направляются на отдаленные, условно не подвижные звезды. При решении многих технических задач условно не подвижными можно считать координатные оси, связанные с Землей.

Параметры механического движения материальных объектов в динамике устанавливаются путем математических выводов из основных законов классической механики.

Первый закон (закон инерции):

Материальная точка сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока действие каких-либо сил не выведет ее из этого состояния.

Равномерное и прямолинейное движение точки называют движением по инерции. Покой является частным случаем движения по инерции, когда скорость точки равна нулю.

Вам понравится:  Портативная колонка smartbuy valkyr sbs 115

Всякая материальная точка обладает инертностью, т. е. стремится сохранить состояние покоя или равномерного прямолинейного движения. Система отсчета, по отношению к которой выполняется закон инерции, называется инерциальной, а движение, наблюдаемое по отношению к этой системе, называется абсолютным. Любая система отсчета, совершающая относительно инерциальной системы поступательное прямолинейное и равномерное движение, будет также инерциальной системой.

Второй закон (основной закон динамики):

Ускорение материальной точки относительно инерциальной системы отсчета пропорционально приложенной к точке силе и совпадает с силой по направлению: .

Из основного закона динамики следует, что при силе ускорение. Масса точки характеризует степень сопротивляемости точки изменению ее скорости, т. е. является мерой инертности материальной точки.

Третий закон (закон действия и противодействия):

Силы, с которыми два тела действуют друг на друга, равны по модулю и направлены вдоль одной прямой в противоположные стороны.

Силы, именуемые действием и противодействием, приложены к разным телам и поэтому уравновешенной системы не образуют.

Четвертый закон (закон независимости действия сил):

При одновременном действии нескольких сил ускорение материальной точки равно геометрической сумме ускорений, которые имела бы точка при действии каждой силы в отдельности:

, где ,,…,.

Источник

Термех_Динамика_ч

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ

Кафедра теоретической механики и теории механизмов и машин

Рекомендовано Учебно-методическим объединением по аграрному техническому образованию в качестве учебно-

методического комплекса для студентов группы специальностей

74 06 Агроинженери я

В 2-х частях Часть 1

УДК 531.3(07) ББК 22.213я7 Т 33

кандидат физико-математических наук, доцент Ю. С. Биза , кандидат технических наук, доцент Н. Л. Ракова , старший преподаватель И. А. Тарасевич

кафедра теоретической механики Учреждения образования «Белорусский национальный технический университет» (заведующий

кафедрой теоретической механики БНТУ доктор физико-математических наук, профессор А. В. Чигарев );

ведущий научный сотрудник лаборатории «Виброзащита механических систем» ГНУ «Объединенный институт машиностроения

НАН Беларуси», кандидат технических наук, доцент А. М. Гоман

Теоретическая механика. Раздел «Динамика» : учебно-

Т33 метод. комплекс. В 2-х ч. Ч. 1 / сост.: Ю. С. Биза, Н. Л. Ракова, И. А. Тарасевич. – Минск : БГАТУ, 2013. – 120 с.

В учебно-методическом комплексе представлены материалы по изучению раздела «Динамика», часть 1, входящего в состав дисциплины «Теоретическая механика». Включает курс лекций, основные материалы по выполнению практических занятий, задания и образцы выполнения заданий для самостоятельной работы и контроля учебной деятельности студентов очной и заочной форм обучения.

УДК 531.3(07) ББК 22.213я7

ISBN 978-985-519-616-8 (Ч. 1)

1. НАУЧНО-ТЕОРЕТИЧЕСКОЕ СОДЕРЖАНИЕ УЧЕБНО-

1.2. Темы лекций и их содержание .

Глава 1. Введение в динамику. Основные понятия

Тема 1. Динамика материальной точки.

1.1. Законы динамики материальной точки

(законы Галилея – Ньютона) .

1.2. Дифференциальные уравнения движения

1.3. Две основные задачи динамики .

Вопросы для повторения .

Задачи для самостоятельного изучения .

Тема 2. Динамика относительного движения

Вопросы для повторения .

Тема 3. Динамика механической системы .

3.1. Геометрия масс. Центр масс механической системы .

3.2. Внутренние силы .

Вопросы для повторения .

Тема 4. Моменты инерции твердого тела .

4.1. Моменты инерции твердого тела

относительно оси и полюса .

4.2. Теорема о моментах инерции твердого тела

относительно параллельных осей

(теорема Гюйгенса – Штейнера) .

4.3. Центробежные моменты инерции .

Вопросы для повторения .

Глава 2. Общие теоремы динамики материальной точки

и механической системы .

Тема 5. Теорема о движении центра масс системы .

Вопросы для повторения .

Задачи для самостоятельного изучения .

Тема 6. Количество движения материальной точки

и механической системы .

6.1. Количество движения материальной точки 43

6.2. Импульс силы .

6.3. Теорема об изменении количества движения

6.4. Теорема об изменении главного вектора

количества движения механической системы .

Вопросы для повторения .

Задачи для самостоятельного изучения .

Тема 7. Момент количества движения материальной точки

и механической системы относительно центра и оси .

7.1. Момент количества движения материальной точки

относительно центра и оси .

7.2. Теорема об изменении момента количества движения

Вам понравится:  Не работает регулятор температуры газовой колонки оазис

материальной точки относительно центра и оси .

7.3. Теорема об изменении кинетического момента

механической системы относительно центра и оси .

Вопросы для повторения .

Задачи для самостоятельного изучения .

Тема 8. Работа и мощность сил .

Вопросы для повторения .

Задачи для самостоятельного изучения .

Тема 9. Кинетическая энергия материальной точки

и механической системы .

9.1. Кинетическая энергия материальной точки

и механической системы. Теорема Кенига .

9.2. Кинетическая энергия твердого тела

при различном движении .

9.3. Теорема об изменении кинетической энергии

9.4. Теорема об изменении кинетической энергии

Вопросы для повторения .

Задачи для самостоятельного изучения .

Тема 10. Потенциальное силовое поле

и потенциальная энергия .

Вопросы для повторения .

Тема 11. Динамика твердого тела .

Вопросы для повторения .

2. МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ КОНТРОЛЯ

3. ЗАДАНИЯ И РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ

САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ .

4. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ

РАБОТ ДЛЯ CТУДЕНТОВ ОЧНОЙ И ЗАОЧНОЙ

5. ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ

К ЭКЗАМЕНУ (ЗАЧЕТУ) СТУДЕНТОВ

ОЧНОЙ И ЗАОЧНОЙ ФОРМ ОБУЧЕНИЯ .

6. СПИСОК ЛИТЕРАТУРЫ .

Теоретическая механика – наука об общих законах механического движения, равновесия и взаимодействия материальных тел.

Это одна из фундаментальных общенаучных физико-математи- ческих дисциплин. Она является теоретической основой современной техники.

Изучение теоретической механики, наряду с другими физикоматематическими дисциплинами, способствует расширению научного кругозора, формирует способности к конкретному и абстрактному мышлению и способствует повышению общей технической культуры будущего специалиста.

Теоретическая механика, являясь научной базой всех технических дисциплин, способствует развитию навыков рациональных решений инженерных задач, связанных с эксплуатацией, ремонтом и конструированием сельскохозяйственных и мелиоративных машин и оборудования.

По характеру рассматриваемых задач механику разделяют на статику, кинематику и динамику. Динамика – раздел теоретической механики, в котором изучается движение материальных тел под действием приложенных сил.

В учебно-методическом комплексе (УМК) представлены материалы по изучению раздела «Динамика», который включает курс лекций, основные материалы для проведения практических работ, задания и образцы выполнения для самостоятельных работ и контроля учебной деятельности студентов очнойи заочной форм обучения.

В результате изучения раздела «Динамика» студент должен усвоить теоретические основы динамики и овладеть основными методами решения задач динамики:

— знать методы решения задач динамики, общие теоремы динамики, принципы механики;

— уметь определять законы движения тела в зависимости от действующих на него сил; применять законы и теоремы механики для решения задач; определять статические и динамические реакции связей, ограничивающих движение тел.

Учебной программой дисциплины «Теоретическая механика» предусмотрено общее количество аудиторных часов – 136, в т. ч. на изучение раздела «Динамика» – 36 часов.

1. НАУЧНО-ТЕОРЕТИЧЕСКОЕ СОДЕРЖАНИЕ УЧЕБНО-МЕТОДИЧЕСКОГО КОМПЛЕКСА

Статика – раздел механики, в котором излагается общее учение о силах, изучается приведение сложных систем сил к простейшему виду и устанавливаются условия равновесия различных систем сил.

Кинематика – это раздел теоретической механики, в котором изучают движение материальных объектов вне зависимости от причин, вызывающих это движение, т. е. вне зависимости от сил, действующих на эти объекты.

Динамика – раздел теоретической механики, в котором изучается движение материальных тел (точек) под действием приложенных сил.

Материальная точка – материальное тело, различие в движении точек которого является несущественным.

Инертность – свойство материальных тел быстрее или медленнее изменять скорость своего движения под действием приложенных сил.

Масса тела – это скалярная положительная величина, зависящая от количества вещества, содержащегося в данном теле, и определяющая его меру инертности при поступательном движении.

Система отсчета – система координат, связанная с телом, по отношению к которому изучается движение другого тела.

Инерциальная система – система, в которой выполняются первый и второй законы динамики.

Импульс силы – векторная мера действия силы в течение некоторого времени.

Количество движения материальной точки – векторная мера ее движения, равная произведению массы точки на вектор ее скорости.

Кинетическаяэнергия – скалярная мерамеханического движения.

Кинетическая энергия материальной точки – скалярная по-

ложительная величина, равная половине произведения массы точки на квадрат ее скорости.

Вам понравится:  Лупы баса для fl studio 20

Элементарная работа силы – это бесконечно малая скалярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы.

Кинетическая энергия – скалярная мера механического движения.

Кинетическая энергия материальной точки – скалярная по-

ложительная величина, равная половине произведения массы точки на квадрат ее скорости.

Кинетическая энергия механической системы – арифме-

тическая сумма кинетических энергий всех материальных точек этой системы.

Сила – мера механического взаимодействия тел, характеризующая его интенсивность и направленность.

1.2. Темы лекций и их содержание

Раздел 1. Введение в динамику. Основные понятия

Тема 1. Динамика материальной точки

Законы динамики материальной точки (законы Галилея – Ньютона). Дифференциальные уравнения движения материальной точки. Две основные задачи динамики для материальной точки. Решение второй задачи динамики; постоянные интегрирования и их определение по начальным условиям.

Литература:[2], стр. 180-196, [3], стр. 12-26.

Тема 2. Динамика относительного движения материальной

Относительное движение материальной точки. Дифференциальные уравнения относительного движения точки; переносная и кориолисова силы инерции. Принцип относительности в классической механике. Случай относительного покоя.

Литература: [2], стр. 180-196, [3], стр. 127-155.

Тема 3. Геометрия масс. Центр масс механической системы

Масса системы. Центр масс системы и его координаты.

Литература: [2], стр. 86-93, стр. 264-265

Тема 4. Моменты инерции твердого тела

Моменты инерции твердого тела относительно оси и полюса. Радиус инерции. Теорема о моментах инерции относительно параллельных осей. Осевые моменты инерции некоторых тел.

Центробежные моменты инерции как характеристика асимметрии тела.

Литература: [2], стр. 265-271, [3], стр. 155-173.

Раздел 2. Общие теоремы динамики материальной точки

и механической системы

Тема 5. Теорема о движении центра масс системы

Теорема о движении центра масс системы. Следствия из теоремы о движении центра масс системы.

Литература: [2], стр. 274-277, [3], стр. 175-192.

Тема 6. Количество движения материальной точки

и механической системы

Количество движения материальной точки и механической системы. Элементарный импульс и импульс силы за конечный промежуток времени. Теорема об изменении количества движения точки и системы в дифференциальной и интегральной формах. Закон сохранения количества движения.

Литература: [2], стр.280-284, [3], стр. 192-207.

Тема 7. Момент количества движения материальной точки

и механической системы относительно центра и оси

Момент количества движения точки относительно центра и оси. Теорема об изменении момента количества движения точки. Кинетический момент механической системы относительно центра и оси.

Кинетический момент вращающегося твердого тела относительно оси вращения. Теорема об изменении кинетического момента системы. Закон сохранения кинетического момента.

Литература: [2], стр. 292-298, [3], стр. 207-258.

Тема 8. Работа и мощность сил

Элементарная работа силы, ее аналитическое выражение. Работа силы на конечном пути. Работа силы тяжести, силы упругости. Равенство нулю суммы работ внутренних сил, действующих в твердом теле. Работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси. Мощность. Коэффициент полезного действия.

Литература: [2], стр. 208-213, [3], стр. 280-290.

Тема 9. Кинетическая энергия материальной точки

и механической системы

Кинетическая энергия материальной точки и механической системы. Вычисление кинетической энергии твердого тела в различных случаях его движения. Теорема Кенига. Теорема об изменении кинетической энергии точки в дифференциальной и интегральной формах. Теорема об изменении кинетической энергии механической системы в дифференциальной и интегральной формах.

Литература: [2], стр. 301-310, [3], стр. 290-344.

Тема 10. Потенциальное силовое поле и потенциальная

Понятие о силовом поле. Потенциальное силовое поле и силовая функция. Работа силы на конечном перемещении точки в потенциальном силовом поле. Потенциальная энергия.

Литература: [2], стр. 317-320, [3], стр. 344-347.

Тема 11. Динамика твердого тела

Дифференциальные уравнения поступательного движения твердого тела. Дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси. Физический маятник. Дифференциальные уравнения плоского движения твердого тела.

Литература: [2], стр. 323-334, [3], стр. 157-173.

Источник

Поделиться с друзьями
Радиолюбительские схемы
Adblock
detector