Эквивалент нагрузки источника питания

Источники питания

Для проверки и налаживания блоков питания, особенно мощных, требуется низкоомная регулируемая нагрузка с допустимой рассеиваемой мощностью до 100 Вт и даже более.

 Эквивалент нагрузки

Применение для этой цели переменных резисторов не всегда возможно, в основном из-за ограниченной мощности рассеяния. Эквивалент нагрузки на ток несколько десятков ампер можно изготовить на основе стабилизатора тока на мощном полевом переключательном транзисторе [1—3]. Но эти эквиваленты не всегда удобны для применения, поскольку для них требуется отдельный источник питания.

Схема эквивалента нагрузки

Его схема показана на рис. 1 (нажмите для увеличения). На ОУ DA1.2 и полевом транзисторе VT2 собран стабилизатор тока. Ток через полевой транзистор (IVT2) зависит от сопротивления датчика тока RI (резисторов R11—R18) и напряжения на движке переменного резистора R8 (UR8), которым регулируют ток: IVT2 = UR8/RI. Конденсатор С4 подавляет высокочастотные помехи, а С5 и С6 в цепи обратной связи ОУ DA1.2 и полевого транзистора соответственно повышают устойчивость работы стабилизатора.

Эквивалент нагрузки

Питается ОУ от повышающего стабилизированного преобразователя напряжения с выходным напряжением 5 В, собранного на микросхеме DA2. Это же напряжение через резистор R7 поступает на регулятор тока. Благодаря преобразователю напряжения устройство можно питать от испытываемого источника питания. При этом минимальное входное напряжение — 0,8…1 В, что позволяет применять предлагаемый эквивалент для проверки и измерения параметров Ni-Cd и Ni-MH аккумуляторов типоразмера АА или ААА.

На ОУ DA1.1 и транзисторе VT1 собран ограничитель напряжения питания преобразователя. При входном напряжении менее 3,8 В на выходе ОУ DA1.1 присутствует напряжение около 4 В, транзистор VT1 открыт полностью и питающее напряжение поступает на преобразователь. Когда входное напряжение превышает 3,8 В, напряжение на выходе ОУ DA1.1 снижается, поэтому рост напряжения на эмиттере транзистора VT1 прекращается и оно остаётся стабильным. Ограничитель напряжения необходим, поскольку предельное значение питающего напряжения микросхемы преобразователя (DA2) 6 В.

Вам понравится:  Собираем солнечный коллектор своими руками (часть 2)

Конструкция и детали эквивалента нагрузки

Применены постоянные резисторы для датчика тока серии RC (типоразмер 2512, максимальная рассеиваемая мощность 1 Вт), остальные — РН1-12 типоразмера 1206 или 0805, переменный — СП4-1, СПО. Все конденсаторы для поверхностного монтажа, оксидные — танталовые типоразмера В или С, остальные — керамические, причём конденсатор С6 монтируют непосредственно на выводах транзистора. Разъём Х1 — винтовой клеммник, рассчитанный на требуемый ток. Транзистор ВС846 можно заменить транзистором серии КТ3130, a IRL2910 — транзистором 1RL3705N, IRL1404Z или другим мощным полевым переключательным с пороговым напряжением не более 2,5 В. Дроссель — для поверхностного монтажа SDR0703 или с проволочными выводами ЕС24.

Четреж печатной платы

Все элементы, кроме переменного резистора, полевого транзистора, разъёма, вентилятора и конденсатора С6, монтируют на односторонней печатной плате из стеклотекстолита толщиной 1… 1,5 мм, её чертёж показан на рис. 2. Применён теплоотвод с вентилятором на напряжение 12 В от процессора персонального компьютера. Транзистор и разъём крепят к теплоотводу винтами, а плату приклеивают. Применение теплопроводящей пасты для транзистора обязательно. Электродвигатель вентилятора начинает вращение при входном напряжении 3…4 В и при 8…10 В уже достаточно эффективно обдувает теплоотвод. Для данного варианта конструкции применён датчик тока с суммарным сопротивлением 0,05 Ом и рассеиваемой мощностью 8 Вт, поэтому максимальный ток эквивалента — 12…13 А, а максимальная рассеиваемая мощность не превышает 100 Вт. Применив более мощные резисторы в качестве датчика тока и более эффективный теплоотвод, можно соответственно увеличить и ток, и рассеиваемую мощность. Максимальное входное напряжение в данном случае зависит от допустимого напряжения питания вентилятора.

Устройство размещают в корпусе подходящего размера (подойдёт корпус от блока питания персонального компьютера), на передней панели устанавливают входные гнёзда, соединённые с разъёмом Х1, и переменный резистор, который можно снабдить проградуированной шкалой. Теплоотвод следует изолировать от металлического корпуса, поскольку он имеет гальваническую связь со стоком полевого транзистора.

Вам понравится:  Блок питания 3В своими руками

Максимальное значение тока устанавливают подборкой резистора R7, при этом движок переменного резистора R8 должен быть в верхнем по схеме положении. Поскольку электродвигатель вентилятора подключён непосредственно к входному разъёму, ток, потребляемый им, складывается с током стабилизатора, поэтому при изменении входного напряжения суммарный ток также изменяется. Чтобы этот ток был стабильным, нижний по схеме вывод электродвигателя подключают не к минусовой линии питания, а к истоку полевого транзистора, как показано на рис.1 штриховой линией.

Эквивалент нагрузки можно использовать для проверки источников питания переменного тока частотой 50 Гц, например, понижающих трансформаторов. В этом случае устройство подключают (с соблюдением полярности) к выходу выпрямительного моста, в котором желательно применить диоды Шотки. Между плюсовым выводом конденсатора С1 и точкой соединения резистора R3 и коллектора транзистора VT1 устанавливают диод того же типа, что и VD1, а ёмкость конденсатора С2 следует увеличить до 100 мкФ. В диодном мосте диоды должны быть рассчитаны на ток эквивалента. Следует учесть, что в этом случае минимальное и максимально допустимое напряжение возрастёт на величину падения напряжения на диодах моста и дополнительном диоде.

ЛИТЕРАТУРА
1. Нечаев И. Эквивалент нагрузки. — Радио, 2007, № 3, с. 34.
2. Нечаев И. Универсальный эквивалент нагрузки. — Радио, 2005, № 1, с. 35.
3. Нечаев И. Универсальный эквивалент нагрузки. — Радио, 2002, № 2, с. 40, 41.

Источник: Радио № 8 2013   Автор: И. Нечаев, г. Москва

Поделиться с друзьями
Радиолюбительские схемы
Adblock
detector